ﻻ يوجد ملخص باللغة العربية
We analyze sparse frame based regularization of inverse problems by means of a diagonal frame decomposition (DFD) for the forward operator, which generalizes the SVD. The DFD allows to define a non-iterative (direct) operator-adapted frame thresholding approach which we show to provide a convergent regularization method with linear convergence rates. These results will be compared to the well-known analysis and synthesis variants of sparse $ell^1$-regularization which are usually implemented thorough iterative schemes. If the frame is a basis (non-redundant case), the thr
The characteristic feature of inverse problems is their instability with respect to data perturbations. In order to stabilize the inversion process, regularization methods have to be developed and applied. In this work we introduce and analyze the co
We consider the inverse source problems with multi-frequency sparse near field measurements. In contrast to the existing near field operator based on the integral over the space variable, a multi-frequency near field operator is introduced based on t
We consider the problem of atmospheric tomography, as it appears for example in adaptive optics systems for extremely large telescopes. We derive a frame decomposition, i.e., a decomposition in terms of a frame, of the underlying atmospheric tomograp
The Alternating Direction Method of Multipliers (ADMM) provides a natural way of solving inverse problems with multiple partial differential equations (PDE) forward models and nonsmooth regularization. ADMM allows splitting these large-scale inverse
Hessian operators arising in inverse problems governed by partial differential equations (PDEs) play a critical role in delivering efficient, dimension-independent convergence for both Newton solution of deterministic inverse problems, as well as Mar