ﻻ يوجد ملخص باللغة العربية
In this study, a multi-grid sampling multi-scale (MGSMS) method is proposed by coupling with finite element (FEM), extended finite element (XFEM) and molecular dynamics (MD) methods.Crack is studied comprehensively from microscopic initiations to macroscopic propagation by MGSMS method. In order to establish the coupling relationship between macroscopic and microscopic model, multi-grid FEM is used to transmit the macroscopic displacement boundary conditions to the atomic model and the multi-grid XFEM is used to feedback the microscopic crack initiations to the macroscopic model. Moreover, an image recognition based crack extracting method is proposed to extract the crack coordinate from the MD result files of efficiently and the Latin hypercube sampling method is used to reduce the computational cost of MD. Numerical results show that MGSMS method can be used to calculate micro-crack initiations and transmit it to the macro-crack model. The crack initiation and propagation simulation of plate under mode I loading is completed.
We consider the inverse source problems with multi-frequency sparse near field measurements. In contrast to the existing near field operator based on the integral over the space variable, a multi-frequency near field operator is introduced based on t
This study suggests a fast computational method for crack propagation, which is based on the extended finite element method (X-FEM). It is well known that the X-FEM might be the most popular numerical method for crack propagation. However, with the i
A representative volume element (RVE) based multi-scale method is proposed to investigate the mechanism of fatigue crack propagation by the molecular dynamics (MD) and the extended finite element methods(XFEM) in this study. An atomic model of carbon
Mineral precipitation and dissolution processes in a porous medium can alter the structure of the medium at the scale of pores. Such changes make numerical simulations a challenging task as the geometry of the pores changes in time in an apriori unkn
In this paper, we consider the development of efficient numerical methods for linear transport equations with random parameters and under the diffusive scaling. We extend to the present case the bi-fidelity stochastic collocation method introduced in