ﻻ يوجد ملخص باللغة العربية
One of the explanations for the recent EDGES-LOW band 21-cm measurements of a strong absorption signal around 80~MHz is the presence of an excess radio background to the Cosmic Microwave Background (CMB). Such excess can be produced by the decay of unstable particles into small mass dark photons which have a non-zero mixing angle with electromagnetism. We use the EDGES-LOW band measurements to derive joint constraints on the properties of the early galaxies and the parameters of such a particle physics model for the excess radio background. A Bayesian analysis shows that a high star formation efficiency and an X-ray luminosity of $1-2 times 10^{41} rm erg ~s^{-1} ~ Mpc^{-3}$ are required along with a suppression of star formation in halos with virial temperatures $lesssim 2times 10^4$ K. The same analysis also suggests a 68 percent credible intervals for the mass of the decaying dark matter particles, its lifetime, dark photon mass and the mixing angle of the dark and ordinary photon oscillation of $[10^{-3.5}, 10^{-2.4}]$ eV, $[10^{1.1}, 10^{2.7}]times tau_U$, $[10^{-12.2}, 10^{-10}]$ eV and $[10^{-7}, 10^{-5.6}]$ respectively. This implies an excess radio background which is $approx 5.7$ times stronger than the CMB around 80~MHz. This value is a factor $sim 3$ higher than the previous predictions which used a simplified model for the 21-cm signal.
Anisotropies in the cosmic microwave background (CMB) are primarily generated by Thomson scattering of photons by free electrons. Around recombination, the Thomson scattering probability quickly diminishes as the free electrons combine with protons t
During and after recombination, in addition to Thomson scattering with free electrons, photons also coupled to neutral hydrogen and helium atoms through Rayleigh scattering. This coupling influences both CMB anisotropies and the distribution of matte
The Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT) have recently provided new, very precise measurements of the cosmic microwave background (CMB) anisotropy damping tail. The values of the cosmological parameters inferred from t
In this Letter we have derived the Jeans length in the context of the Kaniadakis statistics. We have compared this result with the Jeans length obtained in the non-extensive Tsallis statistics and discussed the main differences between these two mode
SPIDER is a balloon-borne instrument designed to map the polarization of the millimeter-wave sky at large angular scales. SPIDER targets the B-mode signature of primordial gravitational waves in the cosmic microwave background (CMB), with a focus on