ترغب بنشر مسار تعليمي؟ اضغط هنا

The Effects of Rayleigh Scattering on the CMB and Cosmic Structure

106   0   0.0 ( 0 )
 نشر من قبل Elham Alipour
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Elham Alipour




اسأل ChatGPT حول البحث

During and after recombination, in addition to Thomson scattering with free electrons, photons also coupled to neutral hydrogen and helium atoms through Rayleigh scattering. This coupling influences both CMB anisotropies and the distribution of matter in the Universe. The frequency-dependence of the Rayleigh cross section breaks the thermal nature of CMB temperature and polarization anisotropies and effectively doubles the number of variables needed to describe CMB intensity and polarization statistics, while the additional atomic coupling changes the matter distribution and the lensing of the CMB. We introduce a new method to capture the effects of Rayleigh scattering on cosmological power spectra. Rayleigh scattering modifies CMB temperature and polarization anisotropies at the $sim!1 %$ level at $353 {rm GHz}$ (scaling $propto u^4$), and modifies matter correlations by as much as $sim!0.3%$. We show the Rayleigh signal, especially the cross-spectra between the thermal (Rayleigh) E-polarization and Rayleigh (thermal) intensity signal, may be detectable with future CMB missions even in the presence of foregrounds, and how this new information might help to better constrain the cosmological parameters.



قيم البحث

اقرأ أيضاً

The cosmic microwave background (CMB) has been a treasure trove for cosmology. Over the next decade, current and planned CMB experiments are expected to exhaust nearly all primary CMB information. To further constrain cosmological models, there is a great benefit to measuring signals beyond the primary modes. Rayleigh scattering of the CMB is one source of additional cosmological information. It is caused by the additional scattering of CMB photons by neutral species formed during recombination and exhibits a strong and unique frequency scaling ($propto u^4$). We will show that with sufficient sensitivity across frequency channels, the Rayleigh scattering signal should not only be detectable but can significantly improve constraining power for cosmological parameters, with limited or no additional modifications to planned experiments. We will provide heuristic explanations for why certain cosmological parameters benefit from measurement of the Rayleigh scattering signal, and confirm these intuitions using the Fisher formalism. In particular, observation of Rayleigh scattering allows significant improvements on measurements of $N_{rm eff}$ and $sum m_ u$.
Magnetic fields are everywhere in nature and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high temperature environment of the big bang. Such a primordial magnetic field (PMF) would be expected to manifest itself in the cosmic microwave background (CMB) temperature and polarization anisotropies, and also in the formation of large- scale structure. In this review we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cut off scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitude $B_lambda$ and the power spectral index $n_B$ which have been deduced from the available CMB observational data by using our computational framework.
One of the explanations for the recent EDGES-LOW band 21-cm measurements of a strong absorption signal around 80~MHz is the presence of an excess radio background to the Cosmic Microwave Background (CMB). Such excess can be produced by the decay of u nstable particles into small mass dark photons which have a non-zero mixing angle with electromagnetism. We use the EDGES-LOW band measurements to derive joint constraints on the properties of the early galaxies and the parameters of such a particle physics model for the excess radio background. A Bayesian analysis shows that a high star formation efficiency and an X-ray luminosity of $1-2 times 10^{41} rm erg ~s^{-1} ~ Mpc^{-3}$ are required along with a suppression of star formation in halos with virial temperatures $lesssim 2times 10^4$ K. The same analysis also suggests a 68 percent credible intervals for the mass of the decaying dark matter particles, its lifetime, dark photon mass and the mixing angle of the dark and ordinary photon oscillation of $[10^{-3.5}, 10^{-2.4}]$ eV, $[10^{1.1}, 10^{2.7}]times tau_U$, $[10^{-12.2}, 10^{-10}]$ eV and $[10^{-7}, 10^{-5.6}]$ respectively. This implies an excess radio background which is $approx 5.7$ times stronger than the CMB around 80~MHz. This value is a factor $sim 3$ higher than the previous predictions which used a simplified model for the 21-cm signal.
We study the inverse Compton scattering of the CMB photons off nonthermal high-energy electrons. In the previous study, assuming the power-law distribution for electrons, we derived the analytic expression for the spectral intensity function $I(omega )$ in the Thomson approximation, which was applicable up to the photon energies of $omega <$ O(GeV). In the present paper, we extend the previous work to higher photon energies of $omega >$ O(GeV) by taking into account the terms dropped in the Thomson approximation, i.e., the Klein-Nishina formula. The analytic expression for $I(omega)$ is derived with the Klein-Nishina formula. It is shown that $I(omega)$ has a knee structure at $omega =$ O(PeV). The knee, if exists, should be accessible with gamma-ray observatories such as Fermi-LAT. We propose simple analytical formulae for $I(omega)$ which are applicable to wide photon energies from Thomson region to extreme Klein-Nishina region.
We develop a systematic and unified approach to estimate all possible secondary (i.e. non-primordial) nonlinear effects to the cosmic microwave background (CMB) polarization, named curve-of-sight integration approach. In this approach, the Boltzmann equation for polarized photons is rewritten in a line-of-sight integral along an exact geodesic in the perturbed universe, rather than a geodesic in the background universe used in the linear-order CMB calculation. This approach resolves the difficulty to solve the Boltzmann hierarchy with the nonlinear gravitational effects in the photon free-streaming regime and thus unifies the standard remapping approach for CMB lensing into the direct approach solving the Boltzmann equation for the nonlinear collisional effects. In this paper, we derive formulae that: (i) include all the nonlinear effects; (ii) can treat extended sources such as the contributions after the reionization. It offers a solid framework to discuss possible systematics in the standard estimation of CMB lensing by the remapping approach. As an explicit demonstration, we estimate the secondary B-mode power spectrum induced by all foreground gravitational effects: lensing, redshift, time-delay, emission-angle, and polarization-rotation effects. We define these effects properly so that they do not have any overlap, also without overlooking any effect. Then, we show that these effects only give corrections of the order of 0.001-0.01% to the standard lensing-induced B-mode power spectrum in the concordance $Lambda$ cold dark matter model. Our result confirms the reliability of using the remapping approach in upcoming CMB experiments aiming to detect the primordial gravitational waves with the tensor-to-scalar ratio of $r sim 10^{-3}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا