ترغب بنشر مسار تعليمي؟ اضغط هنا

Tickling the CMB damping tail: scrutinizing the tension between the ACT and SPT experiments

249   0   0.0 ( 0 )
 نشر من قبل Alessandro Melchiorri dr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT) have recently provided new, very precise measurements of the cosmic microwave background (CMB) anisotropy damping tail. The values of the cosmological parameters inferred from these measurements, while broadly consistent with the expectations of the standard cosmological model, are providing interesting possible indications for new physics that are definitely worth of investigation. The ACT results, while compatible with the standard expectation of three neutrino families, indicate a level of CMB lensing, parametrized by the lensing amplitude parameter A_L, that is about 70% higher than expected. If not a systematic, this anomalous lensing amplitude could be produced by modifications of general relativity or coupled dark energy. Vice-versa, the SPT experiment, while compatible with a standard level of CMB lensing, prefers an excess of dark radiation, parametrized by the effective number of relativistic degrees of freedom N_eff. Here we perform a new analysis of these experiments allowing simultaneous variations in both these, non-standard, parameters. We also combine these experiments, for the first time in the literature, with the recent WMAP9 data, one at a time. Including the Hubble Space Telescope (HST) prior on the Hubble constant and information from baryon acoustic oscillations (BAO) surveys provides the following constraints from ACT: N_eff=3.23pm0.47, A_L=1.65pm0.33 at 68% c.l., while for SPT we have N_eff=3.76pm0.34, A_L=0.81pm0.12 at 68% c.l.. In particular, the A_L estimates from the two experiments, even when a variation in N_eff is allowed, are in tension at more than 95% c.l..



قيم البحث

اقرأ أيضاً

We investigate the $H_0$ tension in a range of extended model frameworks beyond the standard $Lambda$CDM without the data from cosmic microwave background (CMB). Specifically, we adopt the data from baryon acoustic oscillation, big bang nucleosynthes is and type Ia supernovae as indirect measurements of $H_0$ to study the tension. We show that the estimated value of $H_0$ from indirect measurements is overall lower than that from direct local ones regardless of the data sets and a range of extended models to be analyzed, which indicates that, although the significance of the tension varies depending on models, the $H_0$ tension persists in a broad framework beyond the standard $Lambda$CDM model even without CMB data.
The overall cosmological parameter tension between the Atacama Cosmology Telescope 2020 (ACT) and Planck 2018 data within the concordance cosmological model is quantified using the suspiciousness statistic to be 2.6$sigma$. Between ACT and the South Pole Telescope (SPT) we find a tension of 2.4$sigma$, and 2.8$sigma$ between ACT and Planck+SPT combined. While it is unclear whether the tension is caused by statistical fluctuations, systematic effects or new physics, caution should be exercised in combining these cosmic microwave background datasets in the context of the $Lambda$CDM standard model of the universe.
It has been intensively discussed if modifications in the dynamics of the Universe at late times is able or not to solve the $H_0$ tension. On the other hand, it has also been argued that the $H_0$ tension is actually a tension on the supernova absol ute magnitude $M_B$. In this work, we robustly constraint $M_B$ using Pantheon Supernovae Ia (SN) sample, Baryon Acoustic Oscillations (BAO), and Big Bang Nucleosynthesis (BBN) data, and assess the $M_B$ tension by comparing three theoretical models, namely the standard $Lambda$CDM, the $w$CDM and a non-gravitational interaction (IDE) between dark energy (DE) and dark matter (DM). We find that the IDE model can solve the $M_B$ tension with a coupling different from zero at 95% CL, confirming the results obtained using a $H_0$ prior.
Flavour oscillations experiments are suggesting the existence of a sterile, $4$th neutrinos generation with a mass of an eV order. This would mean an additional relativistic degree of freedom in the cosmic inventory, in contradiction with recent resu lts from the Planck satellite, that have confirmed the standard value $N_{eff} approx 3$ for the effective number of relativistic species. On the other hand, the Planck best-fit for the Hubble-Lema^itre parameter is in tension with the local value determined with the Hubble Space Telescope, and adjusting $N_{eff}$ is a possible way to overcome such a tension. In this paper we perform a joint analysis of three complementary cosmological distance rulers, namely the CMB acoustic scale measured by Planck, the BAO scale model-independently determined by Verde {it et al.}, and luminosity distances measured with JLA and Pantheon SNe Ia surveys. Two Gaussian priors were imposed to the analysis, the local expansion rate measured by Riess {it et al.}, and the baryon density parameter fixed from primordial nucleosynthesis by Cooke {it et al.}. For the sake of generality, two different models are used in the tests, the standard $Lambda$CDM model and a generalised Chaplygin gas. The best-fit gives $N_{eff} approx 4$ in both models, with a Chaplygin gas parameter slightly negative, $alpha approx -0.04$. The standard value $N_{eff} approx 3$ is ruled out with $approx 3sigma$.
We show that the $H_0$ tension can be resolved by making recombination earlier, keeping the fit to cosmic microwave background (CMB) data almost intact. We provide a suite of general necessary conditions to give a good fit to CMB data while realizing a high value of $H_0$ suggested by local measurements. As a concrete example for a successful scenario with early recombination, we demonstrate that a model with time-varying $m_e$ can indeed satisfy all the conditions. We further show that such a model can also be well fitted to low-$z$ distance measurements of baryon acoustic oscillation (BAO) and type-Ia supernovae (SNeIa) with a simple extension of the model. Time-varying $m_e$ in the framework of $Omega_kLambda$CDM is found to be a sufficient and excellent example as a solution to the $H_0$ tension, yielding $H_0=72.3_{-2.8} ^{+2.7},$km/sec/Mpc from the combination of CMB, BAO and SNeIa data even without incorporating any direct local $H_0$ measurements. Apart from the $H_0$ tension, this model is also favored from the viewpoint of the CMB lensing anomaly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا