ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic phase diagrams of the spin-$frac{1}{2}$ Heisenberg model on a kagome-strip chain: Emergence of a Haldane phase

123   0   0.0 ( 0 )
 نشر من قبل Katsuhiro Morita
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Frustrated one-dimensional quantum spin systems are known to exhibit a variety of quantum ground states due to the effects of quantum fluctuations and frustrations. In a spin-1/2 kagome-strip chain, which is one of the frustrated one-dimensional spin systems, many quantum phases have been found. However, the magnetic phase diagrams of the kagome-strip chain under magnetic field have not been fully understood. We construct magnetic phase diagrams at 0, 1/5, 3/10, 1/3, 2/5, 7/15, 3/5, and 4/5 magnetization ratio in the kagome-strip chain and investigate magnetic properties in each phase using the density matrix renormalization group method. We find fifteen magnetization-plateau phases, one of which is equivalent to the spin-1 Haldane phase.



قيم البحث

اقرأ أيضاً

Highly frustrated spin systems such as the kagome lattice (KL) are a treasure trove of new quantum states with large entanglements. We thus study the spin-$frac{1}{2}$ Heisenberg model on a kagome-strip chain (KSC), which is one-dimensional KL, using the density-matrix renormalization group (DMRG) method. Calculating central charge and entanglement spectrum for the KSC, we find a novel gapless spin liquid state with doubly degenerate entanglement spectra in a 1/5 magnetization plateau. We also obtain a gapless low-lying continuum in the dynamic spin structure calculated by dynamical DMRG method. We propose a resonating dimer-monomer liquid state that would meet these features.
The properties of ground state of spin-$frac{1}{2}$ kagome antiferromagnetic Heisenberg (KAFH) model have attracted considerable interest in the past few decades, and recent numerical simulations reported a spin liquid phase. The nature of the spin l iquid phase remains unclear. For instance, the interplay between symmetries and $Z_2$ topological order leads to different types of $Z_2$ spin liquid phases. In this paper, we develop a numerical simulation method based on symmetric projected entangled-pair states (PEPS), which is generally applicable to strongly correlated model systems in two spatial dimensions. We then apply this method to study the nature of the ground state of the KAFH model. Our results are consistent with that the ground state is a $U(1)$ Dirac spin liquid rather than a $Z_2$ spin liquid.
Using density-matrix renormalization-group calculations for infinite cylinders, we elucidate the properties of the spin-liquid phase of the spin-$frac{1}{2}$ $J_1$-$J_2$ Heisenberg model on the triangular lattice. We find four distinct ground-states characteristic of a non-chiral, $Z_2$ topologically ordered state with vison and spinon excitations. We shed light on the interplay of topological ordering and global symmetries in the model by detecting fractionalization of time-reversal and space-group dihedral symmetries in the anyonic sectors, which leads to coexistence of symmetry protected and intrinsic topological order. The anyonic sectors, and information on the particle statistics, can be characterized by degeneracy patterns and symmetries of the entanglement spectrum. We demonstrate the ground-states on finite-width cylinders are short-range correlated and gapped; however some features in the entanglement spectrum suggest that the system develops gapless spinon-like edge excitations in the large-width limit.
We study the zero-temperature phase diagram of the spin-$frac{1}{2}$ Heisenberg model with breathing anisotropy (i.e., with different coupling strength on the upward and downward triangles) on the kagome lattice. Our study relies on large scale tenso r network simulations based on infinite projected entangled-pair state and infinite projected entangled-simplex state methods adapted to the kagome lattice. Our energy analysis suggests that the U(1) algebraic quantum spin-liquid (QSL) ground-state of the isotropic Heisenberg model is stable up to very large breathing anisotropy until it breaks down to a critical lattice-nematic phase that breaks rotational symmetry in real space through a first-order quantum phase transition. Our results also provide further insight into the recent experiment on vanadium oxyfluoride compounds which has been shown to be relevant platforms for realizing QSL in the presence of breathing anisotropy.
We present a multiloop pseudofermion functional renormalization group (pffRG) approach to quantum spin systems. As a test case, we study the spin-$tfrac{1}{2}$ Heisenberg model on the kagome lattice, a prime example of a geometrically frustrated magn et believed to host a quantum spin liquid. Our main physical result is that, at pure nearest-neighbor coupling, the system shows indications for an algebraic spin liquid through slower-than-exponential decay with distance for the static spin susceptibility, while the pseudofermion self-energy develops intriguing low-energy features. Methodologically, the pseudofermion representation of spin models inherently yields a strongly interacting system, and the quantitative reliability of a truncated fRG flow is textit{a priori} unclear. Our main technical result is the demonstration of convergence in loop number within multiloop pffRG. Through correspondence with the self-consistent parquet equations, this provides further evidence for the internal consistency of the approach. The loop order required for convergence of the pseudofermion vertices is rather large, but the spin susceptibility is more benign, appearing almost fully converged for loop orders $ell geq 5$. The multiloop flow remains stable as the infrared cutoff $Lambda$ is reduced relative to the microscopic exchange interaction $J$, allowing us to reach values of $Lambda/J$ on the subpercent level in the spin-liquid phase. By contrast, solving the parquet equations via direct fixed-point iteration becomes increasingly difficult for low $Lambda/J$. We also scrutinize the pseudofermion constraint of single occupation per site, which is only fulfilled on average in pffRG, by explicitly computing fermion-number fluctuations. Although the latter are not entirely suppressed, we find that they do not affect the qualitative conclusions drawn from the spin susceptibility.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا