ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiloop pseudofermion functional renormalization for quantum spin systems: Application to the spin-$frac{1}{2}$ kagome Heisenberg model

91   0   0.0 ( 0 )
 نشر من قبل Julian Th\\\"onni{\\ss}
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a multiloop pseudofermion functional renormalization group (pffRG) approach to quantum spin systems. As a test case, we study the spin-$tfrac{1}{2}$ Heisenberg model on the kagome lattice, a prime example of a geometrically frustrated magnet believed to host a quantum spin liquid. Our main physical result is that, at pure nearest-neighbor coupling, the system shows indications for an algebraic spin liquid through slower-than-exponential decay with distance for the static spin susceptibility, while the pseudofermion self-energy develops intriguing low-energy features. Methodologically, the pseudofermion representation of spin models inherently yields a strongly interacting system, and the quantitative reliability of a truncated fRG flow is textit{a priori} unclear. Our main technical result is the demonstration of convergence in loop number within multiloop pffRG. Through correspondence with the self-consistent parquet equations, this provides further evidence for the internal consistency of the approach. The loop order required for convergence of the pseudofermion vertices is rather large, but the spin susceptibility is more benign, appearing almost fully converged for loop orders $ell geq 5$. The multiloop flow remains stable as the infrared cutoff $Lambda$ is reduced relative to the microscopic exchange interaction $J$, allowing us to reach values of $Lambda/J$ on the subpercent level in the spin-liquid phase. By contrast, solving the parquet equations via direct fixed-point iteration becomes increasingly difficult for low $Lambda/J$. We also scrutinize the pseudofermion constraint of single occupation per site, which is only fulfilled on average in pffRG, by explicitly computing fermion-number fluctuations. Although the latter are not entirely suppressed, we find that they do not affect the qualitative conclusions drawn from the spin susceptibility.



قيم البحث

اقرأ أيضاً

We study the zero-temperature phase diagram of the spin-$frac{1}{2}$ Heisenberg model with breathing anisotropy (i.e., with different coupling strength on the upward and downward triangles) on the kagome lattice. Our study relies on large scale tenso r network simulations based on infinite projected entangled-pair state and infinite projected entangled-simplex state methods adapted to the kagome lattice. Our energy analysis suggests that the U(1) algebraic quantum spin-liquid (QSL) ground-state of the isotropic Heisenberg model is stable up to very large breathing anisotropy until it breaks down to a critical lattice-nematic phase that breaks rotational symmetry in real space through a first-order quantum phase transition. Our results also provide further insight into the recent experiment on vanadium oxyfluoride compounds which has been shown to be relevant platforms for realizing QSL in the presence of breathing anisotropy.
The properties of ground state of spin-$frac{1}{2}$ kagome antiferromagnetic Heisenberg (KAFH) model have attracted considerable interest in the past few decades, and recent numerical simulations reported a spin liquid phase. The nature of the spin l iquid phase remains unclear. For instance, the interplay between symmetries and $Z_2$ topological order leads to different types of $Z_2$ spin liquid phases. In this paper, we develop a numerical simulation method based on symmetric projected entangled-pair states (PEPS), which is generally applicable to strongly correlated model systems in two spatial dimensions. We then apply this method to study the nature of the ground state of the KAFH model. Our results are consistent with that the ground state is a $U(1)$ Dirac spin liquid rather than a $Z_2$ spin liquid.
We revisit the description of the low-energy singlet sector of the spin-1/2 Heisenberg antiferromagnet on kagome in terms of an effective quantum dimer model. With the help of exact diagonalizations of appropriate finite-size clusters, we show that t he embedding of a given process in its kagome environment leads to dramatic modifications of the amplitudes of the elementary loop processes, an effect not accessible to the standard approach based on the truncation of the Hamiltonian to the nearest-neighbour valence-bond basis. The resulting parameters are consistent with a Z$_2$ spin liquid rather than with a valence-bond crystal, in agreement with the last density matrix renormalization group results.
We believe that a necessary first step in understanding the ground state properties of the spin-${scriptstylefrac{1}{2}}$ kagome Heisenberg antiferromagnet is a better understanding of this models very large number of low energy singlet states. A des cription of the low energy states that is both accurate and amenable for numerical work may ultimately prove to have greater value than knowing only what these properties are, in particular when these turn on the delicate balance of many small energies. We demonstrate how this program would be implemented using the basis of spin-singlet dimerized states, though other bases that have been proposed may serve the same purpose. The quality of a basis is evaluated by its participation in all the low energy singlets, not just the ground state. From an experimental perspective, and again in light of the small energy scales involved, methods that can deliver all the low energy states promise more robust predictions than methods that only refine a fraction of these states.
Frustrated one-dimensional quantum spin systems are known to exhibit a variety of quantum ground states due to the effects of quantum fluctuations and frustrations. In a spin-1/2 kagome-strip chain, which is one of the frustrated one-dimensional spin systems, many quantum phases have been found. However, the magnetic phase diagrams of the kagome-strip chain under magnetic field have not been fully understood. We construct magnetic phase diagrams at 0, 1/5, 3/10, 1/3, 2/5, 7/15, 3/5, and 4/5 magnetization ratio in the kagome-strip chain and investigate magnetic properties in each phase using the density matrix renormalization group method. We find fifteen magnetization-plateau phases, one of which is equivalent to the spin-1 Haldane phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا