ﻻ يوجد ملخص باللغة العربية
Using density-matrix renormalization-group calculations for infinite cylinders, we elucidate the properties of the spin-liquid phase of the spin-$frac{1}{2}$ $J_1$-$J_2$ Heisenberg model on the triangular lattice. We find four distinct ground-states characteristic of a non-chiral, $Z_2$ topologically ordered state with vison and spinon excitations. We shed light on the interplay of topological ordering and global symmetries in the model by detecting fractionalization of time-reversal and space-group dihedral symmetries in the anyonic sectors, which leads to coexistence of symmetry protected and intrinsic topological order. The anyonic sectors, and information on the particle statistics, can be characterized by degeneracy patterns and symmetries of the entanglement spectrum. We demonstrate the ground-states on finite-width cylinders are short-range correlated and gapped; however some features in the entanglement spectrum suggest that the system develops gapless spinon-like edge excitations in the large-width limit.
We study the phase diagram of the frustrated Heisenberg model on the triangular lattice with nearest and next-nearest neighbor spin exchange coupling, on 3-leg ladders. Using the density-matrix renormalization-group method, we obtain the complete pha
Liu et al. [Phys.Rev.B 98, 241109 (2018)] used Monte Carlo sampling of the physical degrees of freedom of a Projected Entangled Pair State (PEPS) type wave function for the $S=1/2$ frustrated $J_1$-$J_2$ Heisenberg model on the square lattice and fou
Strongly correlated systems with geometric frustrations can host the emergent phases of matter with unconventional properties. Here, we study the spin $S = 1$ Heisenberg model on the honeycomb lattice with the antiferromagnetic first- ($J_1$) and sec
We use the state-of-the-art tensor network state method, specifically, the finite projected entangled pair state (PEPS) algorithm, to simulate the global phase diagram of spin-$1/2$ $J_1$-$J_2$ Heisenberg model on square lattices up to $24times 24$.
We present new numerical tools to analyze symmetry-broken phases in the context of $SU(2)$-symmetric translation-invariant matrix product states (MPS) and density-matrix renormalization-group (DMRG) methods for infinite cylinders, and determine the p