ترغب بنشر مسار تعليمي؟ اضغط هنا

The 27Al(p,a)24Mg reaction at astrophysical energies studied by means of the Trojan Horse Method applied to the 2H(27Al,a24Mg)n reaction

72   0   0.0 ( 0 )
 نشر من قبل Sara Palmerini
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The 27Al(p,a)24Mg reaction, which drives the destruction of 27Al and the production of 24Mg in stellar hydrogen burning, has been investigated via the Trojan Horse Method (THM) by measuring the 2H(27Al,a24Mg)n three-body reaction. The experiment covered a broad energy range (-0.5 MeV < E_cm < 1.5 MeV), aiming to investigate those of interest for astrophysics.The results confirm the THM as a valuable technique for the experimental study of fusion reactions at very low energies and suggest the presence of a rich pattern of resonances in the energy region close to the Gamow window of stellar hydrogen burning (70-120 keV), with potential impact on astrophysics. To estimate such an impact a second run of the experiment is needed, since the background due the three-body reaction hampered to collect enough data to resolve the resonant structures and extract the reaction rate.



قيم البحث

اقرأ أيضاً

Measurement of nuclear cross sections at astrophysical energies involving unstable species is one of the most challenging tasks in experimental nuclear physics. The use of indirect methods is often unavoidable in this scenario. In this paper the Troj an Horse Method is applied for the first time to a radioactive ion beam induced reaction studying the $^{18}$F($p,{alpha}$)$^{15}$O process at low energies relevant to astrophysics via the three body reaction $^{2}$H($^{18}$F,${alpha}^{15}$O)n. The knowledge of the $^{18}$F($p, {alpha}$)$^{15}$O reaction rate is crucial to understand the nova explosion phenomena. The cross section of this reaction is characterized by the presence of several resonances in $^{19}$Ne and possibly interference effects among them. The results reported in Literature are not satisfactory and new investigations of the $^{18}$F($p,{alpha}$)$^{15}$O reaction cross section will be useful. In the present work the spin-parity assignments of relevant levels have been discussed and the astrophysical S-factor has been extracted considering also interference effects
505 - B. Guo , J. Su , Zhihong Li 2012
The evolution of massive stars with very low-metallicities depends critically on the amount of CNO nuclides which they produce. The $^{12}$N($p$,,$gamma$)$^{13}$O reaction is an important branching point in the rap-processes, which are believed to be alternative paths to the slow 3$alpha$ process for producing CNO seed nuclei and thus could change the fate of massive stars. In the present work, the angular distribution of the $^2$H($^{12}$N,,$^{13}$O)$n$ proton transfer reaction at $E_{mathrm{c.m.}}$ = 8.4 MeV has been measured for the first time. Based on the Johnson-Soper approach, the square of the asymptotic normalization coefficient (ANC) for the virtual decay of $^{13}$O$_mathrm{g.s.}$ $rightarrow$ $^{12}$N + $p$ was extracted to be 3.92 $pm$ 1.47 fm$^{-1}$ from the measured angular distribution and utilized to compute the direct component in the $^{12}$N($p$,,$gamma$)$^{13}$O reaction. The direct astrophysical S-factor at zero energy was then found to be 0.39 $pm$ 0.15 keV b. By considering the direct capture into the ground state of $^{13}$O, the resonant capture via the first excited state of $^{13}$O and their interference, we determined the total astrophysical S-factors and rates of the $^{12}$N($p$,,$gamma$)$^{13}$O reaction. The new rate is two orders of magnitude slower than that from the REACLIB compilation. Our reaction network calculations with the present rate imply that $^{12}$N($p,,gamma$)$^{13}$O will only compete successfully with the $beta^+$ decay of $^{12}$N at higher ($sim$two orders of magnitude) densities than initially predicted.
In the present work we report on a new measurement of resonance strengths in the reaction 25Mg(p,gamma)26Al at E_cm= 92 and 189 keV. This study was performed at the LUNA facility in the Gran Sasso underground laboratory using a 4pi BGO summing crysta l. For the first time the 92 keV resonance was directly observed and a resonance strength omega-gamma=(2.9+/-0.6)x10E-10 eV was determined. Additionally, the gamma-ray branchings and strength of the 189 keV resonance were studied with a high resolution HPGe detector yielding an omega-gamma value in agreement with the BGO measurement, but 20% larger compared to previous works.
Radiative capture reactions play a crucial role in stellar nucleosynthesis but have proved challenging to determine experimentally. In particular, the large uncertainty ($sim$100%) in the measured rate of the $^{12}$C$(alpha,gamma)^{16}$O reaction is the largest source of uncertainty in any stellar evolution model. With development of new high current energy-recovery linear accelerators (ERLs) and high density gas targets, measurement of the $^{16}$O$(e,e^prime alpha)^{12}$C reaction close to threshold using detailed balance opens up a new approach to determine the $^{12}$C$(alpha,gamma)^{16}$O reaction rate with significantly increased precision ($<$20%). We present the formalism to relate photo- and electro-disintegration reactions and consider the design of an optimal experiment to deliver increased precision. Once the new ERLs come online, an experiment to validate the new approach we propose should be carried out. This new approach has broad applicability to radiative capture reactions in astrophysics.
The $^{10}$B(p,$alpha_0$)$^7$Be bare nucleus astrophysical S(E)-factor has been measured for the first time at energies from about 100 keV down to about 5 keV by means of the Trojan Horse Method (THM). In this energy region, the S(E)-factor is strong ly dominated by the 8.699 MeV $^{11}$C level (J$^{pi}$=$frac{5}{2}$$^+$), producing an s-wave resonance centered at about 10 keV in the entrance channel. Up to now, only the high energy tail of this resonant has been measured, while the low-energy trend is extrapolated from the available direct data. The THM has been applied to the quasi-free $^2$H($^{10}$B,$alpha_0$$^7$Be)n reaction induced at a boron-beam energy of 24.5 MeV. An accurate analysis brings to the determination of the $^{10}$B(p,$alpha_0$)$^7$Be S(E)-factor and of the corresponding electron screening potential $U_e$, thus giving for the first time an independent evaluation of it.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا