ترغب بنشر مسار تعليمي؟ اضغط هنا

First application of the Trojan Horse Method with a Radioactive Ion Beam: study of the $^{18}$F($p,{alpha}$)$^{15}$O}} reaction at astrophysical energies

110   0   0.0 ( 0 )
 نشر من قبل Silvio Cherubini Dr
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Measurement of nuclear cross sections at astrophysical energies involving unstable species is one of the most challenging tasks in experimental nuclear physics. The use of indirect methods is often unavoidable in this scenario. In this paper the Trojan Horse Method is applied for the first time to a radioactive ion beam induced reaction studying the $^{18}$F($p,{alpha}$)$^{15}$O process at low energies relevant to astrophysics via the three body reaction $^{2}$H($^{18}$F,${alpha}^{15}$O)n. The knowledge of the $^{18}$F($p, {alpha}$)$^{15}$O reaction rate is crucial to understand the nova explosion phenomena. The cross section of this reaction is characterized by the presence of several resonances in $^{19}$Ne and possibly interference effects among them. The results reported in Literature are not satisfactory and new investigations of the $^{18}$F($p,{alpha}$)$^{15}$O reaction cross section will be useful. In the present work the spin-parity assignments of relevant levels have been discussed and the astrophysical S-factor has been extracted considering also interference effects



قيم البحث

اقرأ أيضاً

The 27Al(p,a)24Mg reaction, which drives the destruction of 27Al and the production of 24Mg in stellar hydrogen burning, has been investigated via the Trojan Horse Method (THM) by measuring the 2H(27Al,a24Mg)n three-body reaction. The experiment cove red a broad energy range (-0.5 MeV < E_cm < 1.5 MeV), aiming to investigate those of interest for astrophysics.The results confirm the THM as a valuable technique for the experimental study of fusion reactions at very low energies and suggest the presence of a rich pattern of resonances in the energy region close to the Gamow window of stellar hydrogen burning (70-120 keV), with potential impact on astrophysics. To estimate such an impact a second run of the experiment is needed, since the background due the three-body reaction hampered to collect enough data to resolve the resonant structures and extract the reaction rate.
We have performed the first direct measurement of the 83Rb(p,g) radiative capture reaction cross section in inverse kinematics using a radioactive beam of 83Rb at incident energies of 2.4 and 2.7 A MeV. The measured cross section at an effective rela tive kinetic energy of Ecm = 2.393 MeV, which lies within the relevant energy window for core collapse supernovae, is smaller than the prediction of statistical model calculations. This leads to the abundance of 84Sr produced in the astrophysical p process being higher than previously calculated. Moreover, the discrepancy of the present data with theoretical predictions indicates that further experimental investigation of p-process reactions involving unstable projectiles is clearly warranted.
103 - D. Kahl , J. Jose , P.J. Woods 2021
Context. Direct observation of gamma-ray emission from the decay of $^{18}$F ejected in classical nova outbursts remains a major focus of the nuclear astrophysics community. However, modeling the abundance of ejected $^{18}$F, and thus the predicted detectability distance of a gamma-ray signal near 511 keV emitted from these transient thermonuclear episodes, is hampered by significant uncertainties in our knowledge of the key $^{18}$F(p,$alpha$) reaction rate. Aims. We analyze uncertainties in the most recent nuclear physics experimental results employed to calculate the $^{18}$F(p,$alpha$) reaction rate. Our goal is to determine which uncertainties have the most profound influence on the predicted abundance of $^{18}$F ejected from novae, in order to guide future experimental works. Methods. We calculated a wide range of $^{18}$F(p,$alpha$) reaction rates using R-Matrix formalism, allowing us to take into account all interference effects. Using a selection of 16 evenly-spaced rates over the full range, we performed 16 new hydrodynamic nova simulations. Results. We performed one of the most thorough theoretical studies of the impact of the $^{18}$F(p,$alpha$) reaction in classical novae to date. The $^{18}$F(p,$alpha$) rate remains highly uncertain at nova temperatures, resulting in a factor ~10 uncertainty in the predicted abundance of $^{18}$F ejected from nova explosions. We also found that the abundance of $^{18}$F may be strongly correlated with that of $^{19}$F. Conclusions. Despite numerous nuclear physics uncertainties affecting the $^{18}$F(p,$alpha$) reaction rate, which are dominated by unknown interference signs between 1/2$^+$ and 3/2$^+$ resonances, future experimental work should focus on firmly and precisely determining the directly measurable quantum properties of the subthreshold states in the compound nucleus $^{19}$Ne near 6.13 and 6.29 MeV.
132 - Gy. Gyurky , Zs. Fulop , Z. Halasz 2014
In the model calculations of heavy element nucleosynthesis processes the nuclear reaction rates are taken from statistical model calculations which utilize various nuclear input parameters. It is found that in the case of reactions involving alpha pa rticles the calculations bear a high uncertainty owing to the largely unknown low energy alpha-nucleus optical potential. Experiments are typically restricted to higher energies and therefore no direct astrophysical consequences can be drawn. In the present work a (p,alpha) reaction is used for the first time to study the alpha-nucleus optical potential. The measured 64Zn(p,alpha)61Cu cross section is uniquely sensitive to the alpha-nucleus potential and the measurement covers the whole astrophysically relevant energy range. By the comparison to model calculations, direct evidence is provided for the incorrectness of global optical potentials used in astrophysical models.
Classical novae result from thermonuclear explosions producing several $gamma$-ray emitters which are prime targets for satellites observing in the MeV range. The early 511 keV gamma-ray emission depends critically on the $^{18}$F(p,$alpha$)$^{15}$O reaction rate which, despite many experimental and theoretical efforts, still remains uncertain. One of the main uncertainties in the $^{18}$F(p,$alpha$)$^{15}$O reaction rate is the contribution in the Gamow window of interference between sub-threshold $^{19}$Ne states and known broad states at higher energies. Therefore the goal of this work is to clarify the existence and the nature of these sub-threshold states. States in the $^{19}$Ne compound nucleus were studied at the Tandem-ALTO facility using the $^{19}$F($^3$He,t)$^{19}$Ne charge exchange reaction. Tritons were detected with an Enge Split-pole spectrometer while decaying protons or $alpha$-particles from unbound $^{19}$Ne states were collected, in coincidence, with a double-sided silicon strip detector array. Angular correlations were extracted and constraints on the spin and parity of decaying states established. The coincidence yield at $E_x$ = 6.29 MeV was observed to be high spin, supporting the conclusion that it is indeed a doublet consisting of high spin and low spin components. Evidence for a broad, low spin state was observed around 6 MeV. Branching ratios were extracted for several states above the proton threshold and were found to be consistent with the literature. R-matrix calculations show the relative contribution of sub-threshold states to the astrophysically important energy region above the proton threshold. The levels schemes of $^{19}$Ne and $^{19}$F are still not sufficiently well known and further studies of the analogue assignments are needed. The tentative broad state at 6 MeV may only play a role if the reduced proton width is large.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا