ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the 10 keV resonance in the $^{10}$B($p, alpha_0$)$^7$Be reaction via the Trojan Horse Method

110   0   0.0 ( 0 )
 نشر من قبل Livio Lamia Dr.
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The $^{10}$B(p,$alpha_0$)$^7$Be bare nucleus astrophysical S(E)-factor has been measured for the first time at energies from about 100 keV down to about 5 keV by means of the Trojan Horse Method (THM). In this energy region, the S(E)-factor is strongly dominated by the 8.699 MeV $^{11}$C level (J$^{pi}$=$frac{5}{2}$$^+$), producing an s-wave resonance centered at about 10 keV in the entrance channel. Up to now, only the high energy tail of this resonant has been measured, while the low-energy trend is extrapolated from the available direct data. The THM has been applied to the quasi-free $^2$H($^{10}$B,$alpha_0$$^7$Be)n reaction induced at a boron-beam energy of 24.5 MeV. An accurate analysis brings to the determination of the $^{10}$B(p,$alpha_0$)$^7$Be S(E)-factor and of the corresponding electron screening potential $U_e$, thus giving for the first time an independent evaluation of it.



قيم البحث

اقرأ أيضاً

168 - Y. D. Liu , H. W. Wang , Y. G. Ma 2015
The elastic resonance scattering protons decayed from $^{11}$B to the ground state of $^{10}$Be were measured using the thick-target technique in inverse kinematics at the Heavy Ion Research Facility in Lanzhou (HIRFL). The obtained excitation functi ons were well described by a multichannel R-matrix procedure under the kinematics process assumption of resonant elastic scattering. The excitation energy of the resonant states ranges from 13.0 to 17.0 MeV, and their resonant parameters such as the resonant energy E$_{x}$, the spin-parity J$^pi$, and the proton-decay partial width $Gamma_p$ were determined from R-matrix fits to the data. Two of these states around E$_{x}$ = 14.55 MeV [J$^pi$ = (3/2$^+$, 5/2$^+$), $Gamma_p$ = 475 $pm$ 80 keV] and E$_{x}$ = 14.74 MeV [J$^pi$ = 3/2$^-$, $Gamma_p$ = 830 $pm$ 145 keV], and a probably populated state at E$_x$ = 16.18 MeV [J$^pi$ =(1/2$^-$, 3/2$^-$), $Gamma_p$ $<$ 60 keV], are respectively assigned to the well-known states in $^{11}$B at 14.34 MeV, 15.29 MeV, and 16.43 MeV. The isospin of these three states were previously determined to be T = 3/2, but discrepancies exist in widths and energies due to the current counting statistics and energy resolution. We have compared these states with previous measurements, and the observation of the possibly populated resonance is discussed.
The quantification of isotopes content in materials is extremely important in many research and industrial fields. Accurate determination of boron concentration is very critical in semiconductor, superconductor and steel industry, in environmental an d medical applications as well as in nuclear and astrophysics research. The detection of B isotopes and of their ratio in synthetic and natural materials may be accomplished by gamma spectroscopy using the $^{10}$B(p,$alpha_1 gamma$)$^7$Be and $^{11}$B(p,$gamma$)$^{12}$C reactions at low proton energy. Here, the $^{10}$B(p,$alpha_1 gamma$)$^7$Be cross section is reported in the center of mass energy range 0.35 to 1.8 MeV. The $E_gamma$= 429 keV $gamma$ rays were detected at 45$^circ$ and 90$^circ$ using a NaI(Tl) and an HPGe detectors, respectively. In the presented energy range, previous cross sections data revealed discrepancies and normalisation issues. Existing data are compared to the new absolute measurement and discussed. The present data have been subtracted from a previous measurement of the total cross section to derive the contribution of the $alpha_0$ channel.
The integral measurement of the $^{12}$C(n,p)$^{12}$B reaction was performed at the neutron time of flight facility n_TOF at CERN. The total number of $^{12}$B nuclei produced per neutron pulse of the n_TOF beam was determined using the activation te chnique in combination with a time of flight technique. The cross section is integrated over the n_TOF neutron energy spectrum from reaction threshold at 13.6 MeV to 10 GeV. Having been measured up to 1 GeV on basis of the $^{235}$U(n,f) reaction, the neutron energy spectrum above 200 MeV has been reevaluated due to the recent extension of the cross section reference for this particular reaction, which is otherwise considered a standard up to 200 MeV. The results from the dedicated GEANT4 simulations have been used to evaluate the neutron flux from 1 GeV up to 10 GeV. The experimental results related to the $^{12}$C(n,p)$^{12}$B reaction are compared with the evaluated cross sections from major libraries and with the predictions of different GEANT4 models, which mostly underestimate the $^{12}$B production. On the contrary, a good reproduction of the integral cross section derived from measurements is obtained with TALYS-1.6 calculations, with optimized parameters.
Nuclear reaction rates are among the most important input for understanding the primordial nucleosynthesis and therefore for a quantitative description of the early Universe. An up-to-date compilation of direct cross sections of 2H(d,p)3H, 2H(d,n)3He , 7Li(p,alpha)4He and 3He(d,p)4He reactions is given. These are among the most uncertain cross sections used and input for Big Bang nucleosynthesis calculations. Their measurements through the Trojan Horse Method (THM) are also reviewed and compared with direct data. The reaction rates and the corresponding recommended errors in this work were used as input for primordial nucleosynthesis calculations to evaluate their impact on the 2H, 3,4He and 7Li primordial abundances, which are then compared with observations.
The 27Al(p,a)24Mg reaction, which drives the destruction of 27Al and the production of 24Mg in stellar hydrogen burning, has been investigated via the Trojan Horse Method (THM) by measuring the 2H(27Al,a24Mg)n three-body reaction. The experiment cove red a broad energy range (-0.5 MeV < E_cm < 1.5 MeV), aiming to investigate those of interest for astrophysics.The results confirm the THM as a valuable technique for the experimental study of fusion reactions at very low energies and suggest the presence of a rich pattern of resonances in the energy region close to the Gamow window of stellar hydrogen burning (70-120 keV), with potential impact on astrophysics. To estimate such an impact a second run of the experiment is needed, since the background due the three-body reaction hampered to collect enough data to resolve the resonant structures and extract the reaction rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا