ﻻ يوجد ملخص باللغة العربية
The standard topological approach to indistinguishable particles formulates exchange statistics by using the fundamental group to analyze the connectedness of the configuration space. Although successful in two and more dimensions, this approach gives only trivial or near trivial exchange statistics in one dimension because two-body coincidences are excluded from configuration space. Instead, we include these path-ambiguous singular points and consider configuration space as an orbifold. This orbifold topological approach allows unified analysis of exchange statistics in any dimension and predicts novel possibilities for anyons in one-dimensional systems, including non-abelian anyons obeying alternate strand groups.
We introduce an assisted exchange model (AEM) on a one dimensional periodic lattice with (K+1) different species of hard core particles, where the exchange rate depends on the pair of particles which undergo exchange and their immediate left neighbor
We investigate the usefulness of ground states of quantum spin chains with symmetry-protected topological order (SPTO) for measurement-based quantum computation. We show that, in spatial dimension one, if an SPTO phase supports quantum wire, then, su
This work presents a rigorous theory for topological photonic materials in one dimension. The main focus is on the existence and stability of interface modes that are induced by topological properties of the bulk structure. For a general 1D photonic
As the dimensions of physical systems approach the nanoscale, the laws of thermodynamics must be reconsidered due to the increased importance of fluctuations and quantum effects. While the statistical mechanics of small classical systems is relativel
We study a spin-1/2-particle moving on a one dimensional lattice subject to disorder induced by a random, space-dependent quantum coin. The discrete time evolution is given by a family of random unitary quantum walk operators, where the shift operati