ترغب بنشر مسار تعليمي؟ اضغط هنا

Mathematical theory for topological photonic materials in one dimension

83   0   0.0 ( 0 )
 نشر من قبل Junshan Lin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work presents a rigorous theory for topological photonic materials in one dimension. The main focus is on the existence and stability of interface modes that are induced by topological properties of the bulk structure. For a general 1D photonic structure with time-reversal symmetry, the associated Zak phase (or Berry phase) may not be quantized. We investigate the existence of an interface mode which is induced by a Dirac point upon perturbation. Specifically, we establish conditions on the perturbation which guarantee the opening of a band gap around the Dirac point and the existence of an interface mode. For a periodic photonic structure with both time-reversal and inversion symmetry, the Zak phase is quantized, taking only two values $0, pi$. We show that the Zak phase is determined by the parity (even or odd) of the Bloch modes at the band edges. For a photonic structure consisting of two semi-infinite systems on the two sides of an interface with distinct topological indices, we show the existence of an interface mode inside the common gap. The stability of the mode under perturbations is also investigated. Finally, we study resonances for finite topological structures. Our results are based on the transfer matrix method and the oscillation theory for Sturm-Liouville operators. The methods and results can be extended to general topological Sturm-Liouville systems in one dimension.



قيم البحث

اقرأ أيضاً

We study the spectral and scattering theory of light transmission in a system consisting of two asymptotically periodic waveguides, also known as one-dimensional photonic crystals, coupled by a junction. Using analyticity techniques and commutator me thods in a two-Hilbert spaces setting, we determine the nature of the spectrum and prove the existence and completeness of the wave operators of the system.
76 - Chusei Kiumi , Kei Saito 2020
We study space-inhomogeneous quantum walks (QWs) on the integer lattice which we assign three different coin matrices to the positive part, the negative part, and the origin, respectively. We call them two-phase QWs with one defect. They cover one-de fect and two-phase QWs, which have been intensively researched. Localization is one of the most characteristic properties of QWs, and various types of two-phase QWs with one defect exhibit localization. Moreover, the existence of eigenvalues is deeply related to localization. In this paper, we obtain a necessary and sufficient condition for the existence of eigenvalues. Our analytical methods are mainly based on the transfer matrix, a useful tool to generate the generalized eigenfunctions. Furthermore, we explicitly derive eigenvalues for some classes of two-phase QWs with one defect, and illustrate the range of eigenvalues on unit circles with figures. Our results include some results in previous studies, e.g. Endo et al. (2020).
151 - Chusei Kiumi , Kei Saito 2021
Localization is a characteristic phenomenon of space-inhomogeneous quantum walks in one dimension, where particles remain localized at their initial position. Eigenvectors of time evolution operators are deeply related to the amount of trapping. In t his paper, we introduce the analytical method for the eigenvalue problem using a transfer matrix to quantitatively evaluate localization by deriving the time-averaged limit distribution and reveal the condition of strong trapping.
The paper contains a differential-geometric foundations for an attempt to formulate Lagrangian (canonical) quantum field theory on fibre bundles. In it the standard Hilbert space of quantum field theory is replace with a Hilbert bundle; the former pl aying a role of a (typical) fibre of the letter one. Suitable sections of that bundle replace the ordinary state vectors and the operators on the systems Hilbert space are transformed into morphisms of the same bundle. In particular, the field operators are mapped into corresponding field morphisms.
213 - Guy Baruch 2007
The nonlinear Helmholtz equation (NLH) models the propagation of electromagnetic waves in Kerr media, and describes a range of important phenomena in nonlinear optics and in other areas. In our previous work, we developed a fourth order method for it s numerical solution that involved an iterative solver based on freezing the nonlinearity. The method enabled a direct simulation of nonlinear self-focusing in the nonparaxial regime, and a quantitative prediction of backscattering. However, our simulations showed that there is a threshold value for the magnitude of the nonlinearity, above which the iterations diverge. In this study, we numerically solve the one-dimensional NLH using a Newton-type nonlinear solver. Because the Kerr nonlinearity contains absolute values of the field, the NLH has to be recast as a system of two real equations in order to apply Newtons method. Our numerical simulations show that Newtons method converges rapidly and, in contradistinction with the iterations based on freezing the nonlinearity, enables computations for very high levels of nonlinearity. In addition, we introduce a novel compact finite-volume fourth order discretization for the NLH with material discontinuities.The one-dimensional results of the current paper create a foundation for the analysis of multi-dimensional problems in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا