ﻻ يوجد ملخص باللغة العربية
We study a spin-1/2-particle moving on a one dimensional lattice subject to disorder induced by a random, space-dependent quantum coin. The discrete time evolution is given by a family of random unitary quantum walk operators, where the shift operation is assumed to be deterministic. Each coin is an independent identically distributed random variable with values in the group of two dimensional unitary matrices. We derive sufficient conditions on the probability distribution of the coins such that the system exhibits dynamical localization. Put differently, the tunneling probability between two lattice sites decays rapidly for almost all choices of random coins and after arbitrary many time steps with increasing distance. Our findings imply that this effect takes place if the coin is chosen at random from the Haar measure, or some measure continuous with respect to it, but also for a class of discrete probability measures which support consists of two coins, one of them being the Hadamard coin.
In this work we investigate the inverse of the celebrated Bohigas-Giannoni-Schmit conjecture. Using two inversion methods we compute a one-dimensional potential whose lowest N eigenvalues obey random matrix statistics. Our numerical results indicate
We investigate continuous-time quantum walks of two indistinguishable particles (bosons, fermions or hard-core bosons) in one-dimensional lattices with nearest-neighbour interactions. The two interacting particles can undergo independent- and/or co-w
Given its importance to many other areas of physics, from condensed matter physics to thermodynamics, time-reversal symmetry has had relatively little influence on quantum information science. Here we develop a network-based picture of time-reversal
We consider the Grover walk on infinite trees from the view point of spectral analysis. From the previous works, infinite regular trees provide localization. In this paper, we give the complete characterization of the eigenspace of this Grover walk,
The discrete-time quantum walk (QW) is a quantum version of the random walk (RW) and has been widely investigated for the last two decades. Some remarkable properties of QW are well known. For example, QW has a ballistic spreading, i.e., QW is quadra