ﻻ يوجد ملخص باللغة العربية
Let $A$ be an abelian surface. We construct two complete families of stable vector bundles on the generalized Kummer variety $K_n(A)$. The first is the family of tautological bundles associated to stable bundles on $A$, and the second is the family of the wrong-way fibers of a universal family of stable bundles on the dual abelian variety $widehat{A}$ parametrized by $K_n(A)$. Each family exhibits a smooth connected component in the moduli space of stable bundles on $K_n(A)$.
We study vector bundles on flag varieties over an algebraically closed field $k$. In the first part, we suppose $G=G_k(d,n)$ $(2le dleq n-d)$ to be the Grassmannian manifold parameterizing linear subspaces of dimension $d$ in $k^n$, where $k$ is an a
We develop a theory of etale parallel transport for vector bundles with numerically flat reduction on a $p$-adic variety. This construction is compatible with natural operations on vector bundles, Galois equivariant and functorial with respect to mor
In this article we study the Gieseker-Maruyama moduli spaces $mathcal{B}(e,n)$ of stable rank 2 algebraic vector bundles with Chern classes $c_1=ein{-1,0}, c_2=nge1$ on the projective space $mathbb{P}^3$. We construct two new infinite series $Sigma_0
We call a sheaf on an algebraic variety immaculate if it lacks any cohomology including the zero-th one, that is, if the derived version of the global section functor vanishes. Such sheaves are the basic tools when building exceptional sequences, inv
We construct smooth rational real algebraic varieties of every dimension $ge$ 4 which admit infinitely many pairwise non-isomorphic real forms.