ﻻ يوجد ملخص باللغة العربية
In this article we study the Gieseker-Maruyama moduli spaces $mathcal{B}(e,n)$ of stable rank 2 algebraic vector bundles with Chern classes $c_1=ein{-1,0}, c_2=nge1$ on the projective space $mathbb{P}^3$. We construct two new infinite series $Sigma_0$ and $Sigma_1$ of irreducible components of the spaces $mathcal{B}(e,n)$, for $e=0$ and $e=-1$, respectively. General bundles of these components are obtained as cohomology sheaves of monads, the middle term of which is a rank 4 symplectic instanton bundle in case $e=0$, respectively, twisted symplectic bundle in case $e=-1$. We show that the series $Sigma_0$ contains components for all big enough values of $n$ (more precisely, at least for $nge146$). $Sigma_0$ yields the next example, after the series of instanton components, of an infinite series of components of $mathcal{B}(0,n)$ satisfying this property.
We study the problem of rationality of an infinite series of components, the so-called Ein components, of the Gieseker-Maruyama moduli space $M(e,n)$ of rank 2 stable vector bundles with the first Chern class $e=0$ or -1 and all possible values of th
In this paper we characterize the rank two vector bundles on $mathbb{P}^2$ which are invariant under the actions of the parabolic subgroups $G_p:=mathrm{Stab}_p(mathrm{PGL}(3))$ fixing a point in the projective plane, $G_L:=mathrm{Stab}_L(mathrm{PGL}
We prove formulas for the rational Chow motives of moduli spaces of semistable vector bundles and Higgs bundles of rank 3 and coprime degree on a smooth projective curve. Our approach involves identifying criteria to lift identities in (a completion
Let $A$ be an abelian surface. We construct two complete families of stable vector bundles on the generalized Kummer variety $K_n(A)$. The first is the family of tautological bundles associated to stable bundles on $A$, and the second is the family o
We present a new family of monads whose cohomology is a stable rank two vector bundle on $PP$. We also study the irreducibility and smoothness together with a geometrical description of some of these families. Such facts are used to prove that the mo