ﻻ يوجد ملخص باللغة العربية
We study vector bundles on flag varieties over an algebraically closed field $k$. In the first part, we suppose $G=G_k(d,n)$ $(2le dleq n-d)$ to be the Grassmannian manifold parameterizing linear subspaces of dimension $d$ in $k^n$, where $k$ is an algebraically closed field of characteristic $p>0$. Let $E$ be a uniform vector bundle over $G$ of rank $rle d$. We show that $E$ is either a direct sum of line bundles or a twist of a pull back of the universal bundle $H_d$ or its dual $H_d^{vee}$ by a series of absolute Frobenius maps. In the second part, splitting properties of vector bundles on general flag varieties $F(d_1,cdots,d_s)$ in characteristic zero are considered. We prove a structure theorem for bundles over flag varieties which are uniform with respect to the $i$-th component of the manifold of lines in $F(d_1,cdots,d_s)$. Furthermore, we generalize the Grauert-M$ddot{text{u}}$lich-Barth theorem to flag varieties. As a corollary, we show that any strongly uniform $i$-semistable $(1le ile n-1)$ bundle over the complete flag variety splits as a direct sum of special line bundles.
Let $A$ be an abelian surface. We construct two complete families of stable vector bundles on the generalized Kummer variety $K_n(A)$. The first is the family of tautological bundles associated to stable bundles on $A$, and the second is the family o
We develop a theory of etale parallel transport for vector bundles with numerically flat reduction on a $p$-adic variety. This construction is compatible with natural operations on vector bundles, Galois equivariant and functorial with respect to mor
As a natural extension of the theory of uniform vector bundles on Fano manifolds, we consider uniform principal bundles, and study them by means of the associated flag bundles, as their natural projective geometric realizations. In this paper we deve
Based on the Brieskorn-Slodowy-Grothendieck diagram, we write the holomorphic structures (or filtrations) of the ADE Lie algebra bundles over the corresponding type ADE flag varieties, over the cotangent bundles of these flag varieties, and over the
Instanton bundles on $mathbb{P}^3$ have been at the core of the research in Algebraic Geometry during the last thirty years. Motivated by the recent extension of their definition to other Fano threefolds of Picard number one, we develop the theory of