ﻻ يوجد ملخص باللغة العربية
A priori subcell limiting approach is developed for high-order flux reconstruction/correction procedure via reconstruction (FR/CPR) on two-dimensional unstructured quadrilateral meshes. Firstly, a modified indicator based on modal energy coefficients is proposed to detect troubled cells. Then, troubled cells are decomposed into nonuniform subcells and each subcell has one solution point. A second-order finite difference shock-capturing scheme based on nonuniform nonlinear weighted (NNW) interpolation is constructed to calculate troubled cells while smooth cells are calculated by the CPR method. Numerical investigations show that the subcell limiting strategy on unstructured quadrilateral meshes is robust in shock-capturing.
In this paper, we generalize the compact subcell weighted essentially non oscillatory (CSWENO) limiting strategy for Runge-Kutta discontinuous Galerkin method developed recently by us in 2021 for structured meshes to unstructured triangular meshes. T
In this paper we consider a level set reinitialization technique based on a high-order, local discontinuous Galerkin method on unstructured triangular meshes. A finite volume based subcell stabilization is used to improve the nonlinear stability of t
A series of shock capturing schemes based on nonuniform nonlinear weighted interpolation on nonuniform points are developed for conservation laws. Smoothness indicator and discrete conservation laws are discussed. To make fair comparisons between dif
In this work we propose a discretisation method for the Reissner--Mindlin plate bending problem in primitive variables that supports general polygonal meshes and arbitrary order. The method is inspired by a two-dimensional discrete de Rham complex fo
In this work, we develop a discretisation method for the mixed formulation of the magnetostatic problem supporting arbitrary orders and polyhedral meshes. The method is based on a global discrete de Rham (DDR) sequence, obtained by patching the local