ﻻ يوجد ملخص باللغة العربية
In this paper we consider a level set reinitialization technique based on a high-order, local discontinuous Galerkin method on unstructured triangular meshes. A finite volume based subcell stabilization is used to improve the nonlinear stability of the method. Instead of the standard hyperbolic level set reinitialization, the flow of time Eikonal equation is discretized to construct an approximate signed distance function. Using the Eikonal equation removes the regularization parameter in the standard approach which allows more predictable behavior and faster convergence speeds around the interface. This makes our approach very efficient especially for banded level set formulations. A set of numerical experiments including both smooth and non-smooth interfaces indicate that the method experimentally achieves design order accuracy.
In this paper, we generalize the compact subcell weighted essentially non oscillatory (CSWENO) limiting strategy for Runge-Kutta discontinuous Galerkin method developed recently by us in 2021 for structured meshes to unstructured triangular meshes. T
Discontinuous Galerkin (DG) methods are extensions of the usual Galerkin finite element methods. Although there are vast amount of studies on DG methods, most of them have assumed shape-regularity conditions on meshes for both theoretical error analy
A priori subcell limiting approach is developed for high-order flux reconstruction/correction procedure via reconstruction (FR/CPR) on two-dimensional unstructured quadrilateral meshes. Firstly, a modified indicator based on modal energy coefficients
We propose a Discontinuous Galerkin method for the Poisson equation on polygonal tessellations in two dimensions, stabilized by penalizing, locally in each element $K$, a residual term involving the fluxes, measured in the norm of the dual of $H^1(K)
We introduce a new stabilization for discontinuous Galerkin methods for the Poisson problem on polygonal meshes, which induces optimal convergence rates in the polynomial approximation degree $p$. In the setting of [S. Bertoluzza and D. Prada, A poly