ﻻ يوجد ملخص باللغة العربية
A series of shock capturing schemes based on nonuniform nonlinear weighted interpolation on nonuniform points are developed for conservation laws. Smoothness indicator and discrete conservation laws are discussed. To make fair comparisons between different types of schemes, the properties of eigenvalues of spatial discretization matrices are proved. And the proposed schemes are compared with Weighted Compact Nonlinear Schemes (WCNS) and Flux Reconstruction or Correction Procedure via Reconstruction (FR/CPR) in dispersion, dissipation properties and numerical accuracy. Then, the proposed shock capturing schemes are used as subcell limiters for high-order FR/CPR and the hybrid scheme has superiority in data transformation and satisfying discrete conservation laws. Accuracy, discrete conservation laws and shock capturing properties are tested. Numerical results in one and two dimensions are provided to illustrate that the proposed schemes have good properties in shock capturing and can be applied as subcell limiters for FR/CPR.
A main disadvantage of many high-order methods for hyperbolic conservation laws lies in the famous Gibbs-Wilbraham phenomenon, once discontinuities appear in the solution. Due to the Gibbs-Wilbraham phenomenon, the numerical approximation will be pol
A priori subcell limiting approach is developed for high-order flux reconstruction/correction procedure via reconstruction (FR/CPR) on two-dimensional unstructured quadrilateral meshes. Firstly, a modified indicator based on modal energy coefficients
We propose an Exponential DG approach for numerically solving partial differential equations (PDEs). The idea is to decompose the governing PDE operators into linear (fast dynamics extracted by linearization) and nonlinear (the remaining after removi
We formulate an oversampled radial basis function generated finite difference (RBF-FD) method to solve time-dependent nonlinear conservation laws. The analytic solutions of these problems are known to be discontinuous, which leads to occurrence of no
We build a multi-element variant of the smoothness increasing accuracy conserving (SIAC) shock capturing technique proposed for single element spectral methods by Wissink et al. (B.W. Wissink, G.B. Jacobs, J.K. Ryan, W.S. Don, and E.T.A. van der Weid