ﻻ يوجد ملخص باللغة العربية
We study the relationship between the H{sc i} specific angular momentum (j$_{rm g}$) and the H{sc i} mass (M$_{rm g}$) for a sample of galaxies with well measured H{sc i} rotation curves. We find that the relation is well described by an unbroken power law jg $propto$ mg$^{alpha}$ over the entire mass range (10$^{7}$-10$^{10.5}$ M$_{odot}$), with $alpha = 0.89 pm 0.05$ (scatter 0.18 dex). This is in reasonable agreement with models which assume that evolutionary processes maintain H{sc i} disks in a marginally stable state. The slope we observe is also significantly different from both the $j propto M^{2/3}$ relation expected for dark matter haloes from tidal torquing models and the observed slope of the specific angular momentum-mass relation for the stellar component of disk galaxies. Our sample includes two H{sc i}-bearing ultra diffuse galaxies, and we find that their angular momentum follows the same relation as other galaxies. The only discrepant galaxies in our sample are early-type galaxies with large rotating H{sc i} disks which are found to have significantly higher angular momentum than expected from the power law relation. The H{sc i} disks of all these early-type galaxies are misaligned or counter-rotating with respect to the stellar disks, consistent with the gas being recently accreted. We speculate that late stage wet mergers, as well as cold flows play a dominant role in determining the kinematics of the baryonic component of galaxies as suggested by recent numerical simulations.
We study the empirical relation between an astronomical objects angular momentum $J$ and mass $M$, $J=beta M^alpha$, the $J-M$ relation, using N-body simulations. In particular, we investigate the time evolution of the $J-M$ relation to study how the
In a $Lambda$CDM Universe, the specific stellar angular momentum ($j_ast$) and stellar mass ($M_ast$) of a galaxy are correlated as a consequence of the scaling existing for dark matter haloes ($j_{rm h}propto M_{rm h}^{2/3}$). The shape of this law
We present the relation between stellar specific angular momentum $j_*$, stellar mass $M_*$, and bulge-to-total light ratio $beta$ for THINGS, CALIFA and Romanowsky & Fall datasets, exploring the existence of a fundamental plane between these paramet
We use high-resolution HI data from the WHISP survey to study the HI and angular momentum properties of a sample of 114 late-type galaxies. We explore the specific baryonic angular momentum -- baryonic mass ($j_b - M_b$) relation, and find that an un
We derive the stellar-to-halo specific angular momentum relation (SHSAMR) of galaxies at $z=0$ by combining i) the standard $Lambda$CDM tidal torque theory ii) the observed relation between stellar mass and specific angular momentum (Fall relation) a