ﻻ يوجد ملخص باللغة العربية
In a $Lambda$CDM Universe, the specific stellar angular momentum ($j_ast$) and stellar mass ($M_ast$) of a galaxy are correlated as a consequence of the scaling existing for dark matter haloes ($j_{rm h}propto M_{rm h}^{2/3}$). The shape of this law is crucial to test galaxy formation models, which are currently discrepant especially at the lowest masses, allowing to constrain fundamental parameters, e.g. the retained fraction of angular momentum. In this study, we accurately determine the empirical $j_ast-M_ast$ relation (Fall relation) for 92 nearby spiral galaxies (from S0 to Irr) selected from the Spitzer Photometry and Accurate Rotation Curves (SPARC) sample in the unprecedented mass range $7 lesssim log M_ast/M_odot lesssim 11.5$. We significantly improve all previous estimates of the Fall relation by determining $j_ast$ profiles homogeneously for all galaxies, using extended HI rotation curves, and selecting only galaxies for which a robust $j_ast$ could be measured (converged $j_ast(<R)$ radial profile). We find the relation to be well described by a single, unbroken power-law $j_astpropto M_ast^alpha$ over the entire mass range, with $alpha=0.55pm 0.02$ and orthogonal intrinsic scatter of $0.17pm 0.01$ dex. We finally discuss some implications for galaxy formation models of this fundamental scaling law and, in particular, the fact that it excludes models in which discs of all masses retain the same fraction of the halo angular momentum.
We study the relationship between the H{sc i} specific angular momentum (j$_{rm g}$) and the H{sc i} mass (M$_{rm g}$) for a sample of galaxies with well measured H{sc i} rotation curves. We find that the relation is well described by an unbroken pow
We study the present-day connection between galaxy morphology and angular momentum using the {sc Dark Sage} semi-analytic model of galaxy formation. For galaxies between $ 10^{11}-10^{12} mathrm{M}_{odot}$ in stellar mass, the model successfully pred
Early-type galaxies -- slow and fast rotating ellipticals (E-SRs and E-FRs) and S0s/lenticulars -- define a Fundamental Plane (FP) in the space of half-light radius $R_e$, enclosed surface brightness $I_e$ and velocity dispersion $sigma_e$. Since $I_
We study the baryonic Tully-Fisher relation (BTFR) at z=0 using 153 galaxies from the SPARC sample. We consider different definitions of the characteristic velocity from HI and H-alpha rotation curves, as well as HI line-widths from single-dish obser
We study the empirical relation between an astronomical objects angular momentum $J$ and mass $M$, $J=beta M^alpha$, the $J-M$ relation, using N-body simulations. In particular, we investigate the time evolution of the $J-M$ relation to study how the