ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy spin as a formation probe: the stellar-to-halo specific angular momentum relation

102   0   0.0 ( 0 )
 نشر من قبل Lorenzo Posti
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive the stellar-to-halo specific angular momentum relation (SHSAMR) of galaxies at $z=0$ by combining i) the standard $Lambda$CDM tidal torque theory ii) the observed relation between stellar mass and specific angular momentum (Fall relation) and iii) various determinations of the stellar-to-halo mass relation (SHMR). We find that the ratio $f_j = j_ast/j_{rm h}$ of the specific angular momentum of stars to that of the dark matter i) varies with mass as a double power-law, ii) it always has a peak in the mass range explored and iii) it is $3-5$ times larger for spirals than for ellipticals. The results have some dependence on the adopted SHMR and we provide fitting formulae in each case. For any choice of the SHMR, the peak of $f_j$ occurs at the same mass where the stellar-to-halo mass ratio $f_ast = M_ast/M_{rm h}$ has a maximum. This is mostly driven by the straightness and tightness of the Fall relation, which requires $f_j$ and $f_ast$ to be correlated with each other roughly as $f_jpropto f_ast^{2/3}$, as expected if the outer and more angular momentum rich parts of a halo failed to accrete onto the central galaxy and form stars (biased collapse). We also confirm that the difference in the angular momentum of spirals and ellipticals at a given mass is too large to be ascribed only to different spins of the parent dark-matter haloes (spin bias).



قيم البحث

اقرأ أيضاً

We study the spatially-resolved stellar specific angular momentum $j_*$ in a high-quality sample of 24 CALIFA galaxies covering a broad range of visual morphology, accounting for stellar velocity and velocity dispersion. The shape of the spaxel-wise probability density function of normalised $s=j_*/j_{*mean}$, PDF($s$), deviates significantly from the near-universal initial distribution expected of baryons in a dark matter halo and can be explained by the expected baryonic effects in galaxy formation that remove and redistribute angular momentum. Further we find that the observed shape of the PDF($s$) correlates significantly with photometric morphology, where late-type galaxies have PDF($s$) that is similar to a normal distribution, whereas early types have a strongly-skewed PDF($s$) resulting from an excess of low-angular momentum material. Galaxies that are known to host pseudobulges (bulge Sersic index $n_b <2.2$) tend to have less skewed bulge PDF($s$), with skewness $(b_{1rb})lesssim0.8$. The PDF($s$) encodes both kinematic and photometric information and appears to be a robust tracer of morphology. Its use is motivated by the desire to move away from traditional component-based classifications which are subject to observer bias, to classification on a galaxys fundamental (stellar mass, angular momentum) properties. In future, PDF($s$) may also be useful as a kinematic decomposition tool.
Currently-proposed galaxy quenching mechanisms predict very different behaviours during major halo mergers, ranging from significant quenching enhancement (e.g., clump-induced gravitational heating models) to significant star formation enhancement (e .g., gas starvation models). To test real galaxies behaviour, we present an observational galaxy pair method for selecting galaxies whose host haloes are preferentially undergoing major mergers. Applying the method to central L* (10^10 Msun < M_* < 10^10.5 Msun) galaxies in the Sloan Digital Sky Survey (SDSS) at z<0.06, we find that major halo mergers can at most modestly reduce the star-forming fraction, from 59% to 47%. Consistent with past research, however, mergers accompany enhanced specific star formation rates for star-forming L* centrals: ~10% when a paired galaxy is within 200 kpc (approximately the host halos virial radius), climbing to ~70% when a paired galaxy is within 30 kpc. No evidence is seen for even extremely close pairs (<30 kpc separation) rejuvenating star formation in quenched galaxies. For galaxy formation models, our results suggest: (1) quenching in L* galaxies likely begins due to decoupling of the galaxy from existing hot and cold gas reservoirs, rather than a lack of available gas or gravitational heating from infalling clumps, (2) state-of-the-art semi-analytic models currently over-predict the effect of major halo mergers on quenching, and (3) major halo mergers can trigger enhanced star formation in non-quenched central galaxies.
We study the relationship between the H{sc i} specific angular momentum (j$_{rm g}$) and the H{sc i} mass (M$_{rm g}$) for a sample of galaxies with well measured H{sc i} rotation curves. We find that the relation is well described by an unbroken pow er law jg $propto$ mg$^{alpha}$ over the entire mass range (10$^{7}$-10$^{10.5}$ M$_{odot}$), with $alpha = 0.89 pm 0.05$ (scatter 0.18 dex). This is in reasonable agreement with models which assume that evolutionary processes maintain H{sc i} disks in a marginally stable state. The slope we observe is also significantly different from both the $j propto M^{2/3}$ relation expected for dark matter haloes from tidal torquing models and the observed slope of the specific angular momentum-mass relation for the stellar component of disk galaxies. Our sample includes two H{sc i}-bearing ultra diffuse galaxies, and we find that their angular momentum follows the same relation as other galaxies. The only discrepant galaxies in our sample are early-type galaxies with large rotating H{sc i} disks which are found to have significantly higher angular momentum than expected from the power law relation. The H{sc i} disks of all these early-type galaxies are misaligned or counter-rotating with respect to the stellar disks, consistent with the gas being recently accreted. We speculate that late stage wet mergers, as well as cold flows play a dominant role in determining the kinematics of the baryonic component of galaxies as suggested by recent numerical simulations.
Recent observations reveal that, at a given stellar mass, blue galaxies tend to live in haloes with lower mass while red galaxies live in more massive host haloes. The physical driver behind this is still unclear because theoretical models predict th at, at the same halo mass, galaxies with high stellar masses tend to live in early-formed haloes which naively leads to an opposite trend. Here, we show that the {sc Simba} simulation quantitatively reproduces the colour bimodality in SHMR and reveals an inverse relationship between halo formation time and galaxy transition time. It suggests that the origin of this bimodality is rooted in the intrinsic variations of the cold gas content due to halo assembly bias. {sc Simba}s SHMR bimodality quantitatively relies on two aspects of its input physics: (1) Jet-mode AGN feedback, which quenches galaxies and sets the qualitative trend; and (2) X-ray AGN feedback, which fully quenches galaxies and yields better agreement with observations. The interplay between the growth of cold gas and the AGN quenching in {sc Simba} results in the observed SHMR bimodality.
The determination of the specific angular momentum radial profile, $j(r)$, in the early stages of star formation is crucial to constrain star and circumstellar disk formation theories. The specific angular momentum is directly related to the largest Keplerian disk possible, and it could constrain the angular momentum removal mechanism. We determine $j(r)$ towards two Class 0 objects and a first hydrostatic core candidate in the Perseus cloud, which is consistent across all three sources and well fit with a single power-law relation between 800 and 10,000,au: $j_{fit}(r)=10^{-3.60pm0.15}left(r/textrm{1,000au}right)^{1.80pm0.04}$ km s$^{-1}$ pc. This power-law relation is in between solid body rotation ($propto r^2$) and pure turbulence ($propto r^{1.5}$). This strongly suggests that even at 1,000,au, the influence of the dense cores initial level of turbulence or the connection between core and the molecular cloud is still present. The specific angular momentum at 10,000,au is $approx3times$ higher than previously estimated, while at 1,000,au it is lower by $2times$. We do not find a region of conserved specific angular momentum, although it could still be present at a smaller radius. We estimate an upper limit to the largest Keplerian disk radius of 60,au, which is small but consistent with published upper limits. Finally, these results suggest that more realistic initial conditions for numerical simulations of disk formation are needed. Some possible solutions include: a) use a larger simulation box to include some level of driven turbulence or connection to the parental cloud, or b) incorporate the observed $j(r)$ to setup the dense core kinematics initial conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا