ﻻ يوجد ملخص باللغة العربية
Let $f$ and $tilde{f}$ be two circle diffeomorphisms with a break point, with the same irrational rotation number of bounded type, the same size of the break $c$ and satisfying a certain Zygmund type smoothness condition depending on a parameter $gamma>2.$ We prove that under a certain condition imposed on the break size $c$, the diffeomorphisms $f$ and $tilde{f}$ are $C^{1+omega_{gamma}}$-smoothly conjugate to each other, where $omega_{gamma}(delta)=|log delta|^{-(gamma/2-1)}.$
Let (M,g) be a compact oriented Einstein 4-manifold. Write R-plus for the part of the curvature operator of g which acts on self-dual 2-forms. We prove that if R-plus is negative definite then g is locally rigid: any other Einstein metric near to g i
Circle packings with specified patterns of tangencies form a discrete counterpart of analytic functions. In this paper we study univalent packings (with a combinatorial closed disk as tangent graph) which are embedded in (or fill) a bounded, simply c
Given any compact manifold M, we construct a non-empty open subset O of the space of C^1-diffeomorphisms of M and a dense subset D of O such that the centralizer of every diffeomorphism in D is uncountable, hence non-trivial.
We study the ergodic theory of non-conservative C^1-generic diffeomorphisms. First, we show that homoclinic classes of arbitrary diffeomorphisms exhibit ergodic measures whose supports coincide with the homoclinic class. Second, we show that generic
In this paper we study homeomorphisms of the circle with several critical points and bounded type rotation number. We prove complex a priori bounds for these maps. As an application, we get that bi-cubic circle maps with same bounded type rotation number are $C^{1+alpha}$ rigid.