ترغب بنشر مسار تعليمي؟ اضغط هنا

Local rigidity of Einstein 4-manifolds satisfying a chiral curvature condition

116   0   0.0 ( 0 )
 نشر من قبل Joel Fine
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Let (M,g) be a compact oriented Einstein 4-manifold. Write R-plus for the part of the curvature operator of g which acts on self-dual 2-forms. We prove that if R-plus is negative definite then g is locally rigid: any other Einstein metric near to g is isometric to it. This is a chiral generalisation of Koisos Theorem, which proves local rigidity of Einstein metrics with negative sectional curvatures. Our hypotheses are roughly one half of Koisos. Our proof uses a new variational description of Einstein 4-manifolds, as critical points of the so-called poure connection action S. The key step in the proof is that when R-plus is negative definite, the Hessian of S is strictly positive modulo gauge.



قيم البحث

اقرأ أيضاً

141 - Xiaodong Cao , Hung Tran 2016
In this paper, we obtain classification of four-dimensional Einstein manifolds with positive Ricci curvature and pinched sectional curvature. In particular, the first result concerns with an upper bound of sectional curvature, improving a theorem of E. Costa. The second is a generalization of D. Yangs result assuming an upper bound on the difference between sectional curvatures.
In this paper, we show that a closed $n$-dimensional generalized ($lambda, n+m)$-Einstein manifold with positive isotropic curvature and constant scalar curvature must be isometric to either a sphere ${Bbb S}^n$, or a product ${Bbb S}^{1} times {Bbb S}^{n-1}$ of a circle with an $(n-1)$-sphere, up to finite cover and rescaling.
258 - Tian Chong , Yuxin Dong , Hezi Lin 2014
We derive some elliptic differential inequalities from the Weitzenbock formulas for the traceless Ricci tensor of a Kahler manifold with constant scalar curvature and the Bochner tensor of a Kahler-Einstein manifold respectively. Using elliptic estim ates and maximum principle, some $L^p$ and $L^infty $ pinching results are established to characterize Kahler-Einstein manifolds among Kahler manifolds with constant scalar curvature, and others are given to characterize complex space forms among Kahler-Einstein manifolds. Finally, these pinching results may be combined to characterize complex space forms among Kahler manifolds with constant scalar curvature.
Let $f$ and $tilde{f}$ be two circle diffeomorphisms with a break point, with the same irrational rotation number of bounded type, the same size of the break $c$ and satisfying a certain Zygmund type smoothness condition depending on a parameter $gam ma>2.$ We prove that under a certain condition imposed on the break size $c$, the diffeomorphisms $f$ and $tilde{f}$ are $C^{1+omega_{gamma}}$-smoothly conjugate to each other, where $omega_{gamma}(delta)=|log delta|^{-(gamma/2-1)}.$
Leon Green obtained remarkable rigidity results for manifolds of positive scalar curvature with large conjugate radius and/or injectivity radius. Using $C^{k,alpha}$ convergence techniques, we prove several differentiable stability and sphere theor
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا