ﻻ يوجد ملخص باللغة العربية
A test particle in a noncoplanar orbit about a member of a binary system can undergo Kozai-Lidov oscillations in which tilt and eccentricity are exchanged. An initially circular highly inclined particle orbit can reach high eccentricity. We consider the nonlinear secular evolution equations previously obtained in the quadrupole approximation. For the important case that the initial eccentricity of the particle orbit is zero, we derive an analytic solution for the particle orbital elements as a function of time that is exact within the quadrupole approximation. The solution involves only simple trigonometric and hyperbolic functions. It simplifies in the case that the initial particle orbit is close to being perpendicular to the binary orbital plane. The solution also provides an accurate description of particle orbits with nonzero but sufficiently small initial eccentricity. It is accurate over a range of initial eccentricity that broadens at higher initial inclinations. In the case of an initial inclination of pi/3, an error of 1% at maximum eccentricity occurs for initial eccentricities of about 0.1.
We use three dimensional hydrodynamical simulations to show that a highly misaligned accretion disk around one component of a binary system can exhibit global Kozai-Lidov cycles, where the inclination and eccentricity of the disk are interchanged per
Using repeated Laplace transform techniques, along with newly-developed accurate numerical inverse Laplace transform algorithms, we transform the coupled, integral-differential NLO singlet DGLAP equations first into coupled differential equations, th
The secular approximation of the hierarchical three body systems has been proven to be very useful in addressing many astrophysical systems, from planets, stars to black holes. In such a system two objects are on a tight orbit, and the tertiary is on
The double-averaging (DA) approximation is widely employed as the standard technique in studying the secular evolution of the hierarchical three-body system. We show that effects stemmed from the short-timescale oscillations ignored by DA can accumul
We have analytically solved the LO pQCD singlet DGLAP equations using Laplace transform techniques. Newly-developed highly accurate numerical inverse Laplace transform algorithms allow us to write fully decoupled solutions for the singlet structure f