ﻻ يوجد ملخص باللغة العربية
We have analytically solved the LO pQCD singlet DGLAP equations using Laplace transform techniques. Newly-developed highly accurate numerical inverse Laplace transform algorithms allow us to write fully decoupled solutions for the singlet structure function F_s(x,Q^2)and G(x,Q^2) as F_s(x,Q^2)={cal F}_s(F_{s0}(x), G_0(x)) and G(x,Q^2)={cal G}(F_{s0}(x), G_0(x)). Here {cal F}_s and cal G are known functions of the initial boundary conditions F_{s0}(x) = F_s(x,Q_0^2) and G_{0}(x) = G(x,Q_0^2), i.e., the chosen starting functions at the virtuality Q_0^2. For both G and F_s, we are able to either devolve or evolve each separately and rapidly, with very high numerical accuracy, a computational fractional precision of O(10^{-9}). Armed with this powerful new tool in the pQCD arsenal, we compare our numerical results from the above equations with the published MSTW2008 and CTEQ6L LO gluon and singlet F_s distributions, starting from their initial values at Q_0^2=1 GeV^2 and 1.69 GeV^2, respectively, using their choices of alpha_s(Q^2). This allows an important independent check on the accuracies of their evolution codes and therefore the computational accuracies of their published parton distributions. Our method completely decouples the two LO distributions, at the same time guaranteeing that both G and F_s satisfy the singlet coupled DGLAP equations. It also allows one to easily obtain the effects of the starting functions on the evolved gluon and singlet structure functions, as functions of both Q^2 and Q_0^2, being equally accurate in devolution as in evolution. Further, it can also be used for non-singlet distributions, thus giving LO analytic solutions for individual quark and gluon distributions at a given x and Q^2, rather than the numerical solutions of the coupled integral-differential equations on a large, but fixed, two-dimensional grid that are currently available.
Using repeated Laplace transform techniques, along with newly-developed accurate numerical inverse Laplace transform algorithms, we transform the coupled, integral-differential NLO singlet DGLAP equations first into coupled differential equations, th
A test particle in a noncoplanar orbit about a member of a binary system can undergo Kozai-Lidov oscillations in which tilt and eccentricity are exchanged. An initially circular highly inclined particle orbit can reach high eccentricity. We consider
In this paper, we derive two second- order of differential equation for the gluon and singlet distribution functions by using the Laplace transform method. We decoupled the solutions of the singlet and gluon distributions into the initial conditions
We study the interface between Regge behavior and DGLAP evolution in a non-perturbative model for the nucleon structure function based on a multipole pomeron exchange. This model provides the input for a subsequent DGLAP evolution that we calculate n
DGLAP evolution equations are modified in order to use all the quark families in the full scale range, satisfying kinematical constraints and sumrules, thus having complete continuity for the pdfs and observables. Some consequences of this new approach are shown.