ترغب بنشر مسار تعليمي؟ اضغط هنا

On refined Chern-Simons and refined ABJ matrix models

216   0   0.0 ( 0 )
 نشر من قبل Luca Cassia
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the matrix model of $U(N)$ refined Chern-Simons theory on $S^3$ for the unknot. We derive a $q$-difference operator whose insertion in the matrix integral reproduces an infinite set of Ward identities which we interpret as $q$-Virasoro constraints. The constraints are rewritten as difference equations for the generating function of Wilson loop expectation values which we solve as a recursion for the correlators of the model. The solution is repackaged in the form of superintegrability formulas for Macdonald polynomials. Additionally, we derive an equivalent $q$-difference operator for a similar refinement of ABJ theory and show that the corresponding $q$-Virasoro constraints are equal to those of refined Chern-Simons for a gauge super-group $U(N|M)$. Our equations and solutions are manifestly symmetric under Langlands duality $qleftrightarrow t^{-1}$ which correctly reproduces 3d Seiberg duality when $q$ is a specific root of unity.



قيم البحث

اقرأ أيضاً

78 - Omar Foda , Jian-Feng Wu 2017
We consider the refined topological vertex of Iqbal et al, as a function of two parameters (x, y), and deform it by introducing Macdonald parameters (q, t), as in the work of Vuletic on plane partitions, to obtain a Macdonald refined topological vert ex. In the limit q -> t, we recover the refined topological vertex of Iqbal et al. In the limit x -> y, we obtain a qt-deformation of the topological vertex of Aganagic et al. Copies of the vertex can be glued to obtain qt-deformed 5D instanton partition functions that have well-defined 4D limits and, for generic values of (q, t), contain infinite-towers of poles for every pole in the limit q -> t.
Whenever available, refined BPS indices provide considerably more information on the spectrum of BPS states than their unrefined version. Extending earlier work on the modularity of generalized Donaldson-Thomas invariants counting D4-D2-D0 brane boun d states in type IIA strings on a Calabi-Yau threefold $mathfrak{Y}$, we construct the modular completion of generating functions of refined BPS indices supported on a divisor class. Although for compact $mathfrak{Y}$ the refined indices are not protected, switching on the refinement considerably simplifies the construction of the modular completion. Furthermore, it leads to a non-commutative analogue of the TBA equations, which suggests a quantization of the moduli space consistent with S-duality. In contrast, for a local CY threefold given by the total space of the canonical bundle over a complex surface $S$, refined BPS indices are well-defined, and equal to Vafa-Witten invariants of $S$. Our construction provides a modular completion of the generating function of these refined invariants for arbitrary rank. In cases where all reducible components of the divisor class are collinear (which occurs e.g. when $b_2(mathfrak{Y})=1$, or in the local case), we show that the holomorphic anomaly equation satisfied by the completed generating function truncates at quadratic order. In the local case, it agrees with an earlier proposal by Minahan et al for unrefined invariants, and extends it to the refined level using the afore-mentioned non-commutative structure. Finally, we show that these general predictions reproduce known results for $U(2)$ and $U(3)$ Vafa-Witten theory on $mathbb{P}^2$, and make them explicit for $U(4)$.
We compute partition functions of Chern-Simons type theories for cylindrical spacetimes $I times Sigma$, with $I$ an interval and $dim Sigma = 4l+2$, in the BV-BFV formalism (a refinement of the Batalin-Vilkovisky formalism adapted to manifolds with boundary and cutting-gluing). The case $dim Sigma = 0$ is considered as a toy example. We show that one can identify - for certain choices of residual fields - the physical part (restriction to degree zero fields) of the BV-BFV effective action with the Hamilton-Jacobi action computed in the companion paper [arXiv:2012.13270], without any quantum corrections. This Hamilton-Jacobi action is the action functional of a conformal field theory on $Sigma$. For $dim Sigma = 2$, this implies a version of the CS-WZW correspondence. For $dim Sigma = 6$, using a particular polarization on one end of the cylinder, the Chern-Simons partition function is related to Kodaira-Spencer gravity (a.k.a. BCOV theory); this provides a BV-BFV quantum perspective on the semiclassical result by Gerasimov and Shatashvili.
We test in $(A_{n-1},A_{m-1})$ Argyres-Douglas theories with $mathrm{gcd}(n,m)=1$ the proposal of Songs in arXiv:1612.08956 that the Macdonald index gives a refined character of the dual chiral algebra. In particular, we extend the analysis to higher rank theories and Macdonald indices with surface operator, via the TQFT picture and Gaiotto-Rastelli-Razamats Higgsing method. We establish the prescription for refined characters in higher rank minimal models from the dual $(A_{n-1},A_{m-1})$ theories in the large $m$ limit, and then provide evidence for Songs proposal to hold (at least) in some simple modules (including the vacuum module) at finite $m$. We also discuss some observed mismatch in our approach.
We study Chern-Simons theory on 3-manifolds M that are circle-bundles over 2-dimensional orbifolds S by the method of Abelianisation. This method, which completely sidesteps the issue of having to integrate over the moduli space of non-Abelian flat c onnections, reduces the complete partition function of the non-Abelian theory on M to a 2-dimensional Abelian theory on the orbifold S which is easily evaluated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا