ترغب بنشر مسار تعليمي؟ اضغط هنا

A Macdonald refined topological vertex

79   0   0.0 ( 0 )
 نشر من قبل Omar Foda
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the refined topological vertex of Iqbal et al, as a function of two parameters (x, y), and deform it by introducing Macdonald parameters (q, t), as in the work of Vuletic on plane partitions, to obtain a Macdonald refined topological vertex. In the limit q -> t, we recover the refined topological vertex of Iqbal et al. In the limit x -> y, we obtain a qt-deformation of the topological vertex of Aganagic et al. Copies of the vertex can be glued to obtain qt-deformed 5D instanton partition functions that have well-defined 4D limits and, for generic values of (q, t), contain infinite-towers of poles for every pole in the limit q -> t.



قيم البحث

اقرأ أيضاً

We test in $(A_{n-1},A_{m-1})$ Argyres-Douglas theories with $mathrm{gcd}(n,m)=1$ the proposal of Songs in arXiv:1612.08956 that the Macdonald index gives a refined character of the dual chiral algebra. In particular, we extend the analysis to higher rank theories and Macdonald indices with surface operator, via the TQFT picture and Gaiotto-Rastelli-Razamats Higgsing method. We establish the prescription for refined characters in higher rank minimal models from the dual $(A_{n-1},A_{m-1})$ theories in the large $m$ limit, and then provide evidence for Songs proposal to hold (at least) in some simple modules (including the vacuum module) at finite $m$. We also discuss some observed mismatch in our approach.
A string theoretic derivation is given for the conjecture of Hausel, Letellier, and Rodriguez-Villegas on the cohomology of character varieties with marked points. Their formula is identified with a refined BPS expansion in the stable pair theory of a local root stack, generalizing previous work of the first two authors in collaboration with G. Pan. Haimans geometric construction for Macdonald polynomials is shown to emerge naturally in this context via geometric engineering. In particular this yields a new conjectural relation between Macdonald polynomials and refined local orbifold curve counting invariants. The string theoretic approach also leads to a new spectral cover construction for parabolic Higgs bundles in terms of holomorphic symplectic orbifolds.
215 - Luca Cassia , Maxim Zabzine 2021
We consider the matrix model of $U(N)$ refined Chern-Simons theory on $S^3$ for the unknot. We derive a $q$-difference operator whose insertion in the matrix integral reproduces an infinite set of Ward identities which we interpret as $q$-Virasoro co nstraints. The constraints are rewritten as difference equations for the generating function of Wilson loop expectation values which we solve as a recursion for the correlators of the model. The solution is repackaged in the form of superintegrability formulas for Macdonald polynomials. Additionally, we derive an equivalent $q$-difference operator for a similar refinement of ABJ theory and show that the corresponding $q$-Virasoro constraints are equal to those of refined Chern-Simons for a gauge super-group $U(N|M)$. Our equations and solutions are manifestly symmetric under Langlands duality $qleftrightarrow t^{-1}$ which correctly reproduces 3d Seiberg duality when $q$ is a specific root of unity.
We propose a concrete form of a vertex function, which we call O-vertex, for the intersection between an O5-plane and a 5-brane in the topological vertex formalism, as an extension of the work of arXiv:1709.01928. Using the O-vertex it is possible to compute the Nekrasov partition functions of 5d theories realized on any 5-brane web diagrams with O5-planes. We apply our proposal to 5-brane webs with an O5-plane and compute the partition functions of pure SO($N$) gauge theories and the pure $G_2$ gauge theory. The obtained results agree with the results known in the literature. We also compute the partition function of the pure SU(3) gauge theory with the Chern-Simons level $9$. At the end we rewrite the O-vertex in a form of a vertex operator.
We present closed-form expressions of unrefined instanton partition functions for gauge groups of type $BCD$ as sums over Young diagrams. For $mathrm{SO}(n)$ gauge groups, we provide a fivebrane web picture of our formula based on the vertex-operator formalism of the topological vertex with a new type called O-vertex for an O5-plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا