ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing Macdonald Index as a Refined Character of Chiral Algebra

94   0   0.0 ( 0 )
 نشر من قبل Nick R.D. Zhu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We test in $(A_{n-1},A_{m-1})$ Argyres-Douglas theories with $mathrm{gcd}(n,m)=1$ the proposal of Songs in arXiv:1612.08956 that the Macdonald index gives a refined character of the dual chiral algebra. In particular, we extend the analysis to higher rank theories and Macdonald indices with surface operator, via the TQFT picture and Gaiotto-Rastelli-Razamats Higgsing method. We establish the prescription for refined characters in higher rank minimal models from the dual $(A_{n-1},A_{m-1})$ theories in the large $m$ limit, and then provide evidence for Songs proposal to hold (at least) in some simple modules (including the vacuum module) at finite $m$. We also discuss some observed mismatch in our approach.



قيم البحث

اقرأ أيضاً

78 - Omar Foda , Jian-Feng Wu 2017
We consider the refined topological vertex of Iqbal et al, as a function of two parameters (x, y), and deform it by introducing Macdonald parameters (q, t), as in the work of Vuletic on plane partitions, to obtain a Macdonald refined topological vert ex. In the limit q -> t, we recover the refined topological vertex of Iqbal et al. In the limit x -> y, we obtain a qt-deformation of the topological vertex of Aganagic et al. Copies of the vertex can be glued to obtain qt-deformed 5D instanton partition functions that have well-defined 4D limits and, for generic values of (q, t), contain infinite-towers of poles for every pole in the limit q -> t.
A string theoretic derivation is given for the conjecture of Hausel, Letellier, and Rodriguez-Villegas on the cohomology of character varieties with marked points. Their formula is identified with a refined BPS expansion in the stable pair theory of a local root stack, generalizing previous work of the first two authors in collaboration with G. Pan. Haimans geometric construction for Macdonald polynomials is shown to emerge naturally in this context via geometric engineering. In particular this yields a new conjectural relation between Macdonald polynomials and refined local orbifold curve counting invariants. The string theoretic approach also leads to a new spectral cover construction for parabolic Higgs bundles in terms of holomorphic symplectic orbifolds.
We give some evidences which imply that W(1+infinity) algebra describes the symmetry behind AGT(-W) conjecture: a correspondence between the partition function of N=2 supersymmetric quiver gauge theories and the correlators of Liouville (Toda) field theory.
We study the 2D vertex operator algebra (VOA) construction in 4D $mathcal{N}=2$ superconformal field theories (SCFT) on $S^3 times S^1$, focusing both on old puzzles as well as new observations. The VOA lives on a two-torus $mathbb{T}^2subset S^3time s S^1$, it is $frac12mathbb{Z}$-graded, and this torus is equipped with the natural choice of spin structure (1,0) for the $mathbb{Z} +frac12$-graded operators, corresponding to the NS sector vacuum character. By analyzing the possible refinements of the Schur index that preserve the VOA, we find that it admits discrete deformations, which allow access to the remaining spin structures (1,1), (0,1) and (0,0), of which the latter two involve the inclusion of a particular surface defect. For Lagrangian theories, we perform the detailed analysis: we describe the natural supersymmetric background, perform localization, and derive the gauged symplectic boson action on a torus in any spin structure. In the absence of flavor fugacities, the 2D and 4D path integrals precisely match, including the Casimir factors. We further analyze the 2D theory: we identify its integration cycle, the two-point functions, and interpret flavor holonomies as screening charges in the VOA. Next, we make some observations about modularity; the $T$-transformation acts on our four partition functions and lifts to a large diffeomorphism on $S^3times S^1$. More interestingly, we generalize the four partition functions on the torus to an infinite family labeled both by the spin structure and the integration cycle inside the complexified maximal torus of the gauge group. Members of this family transform into one another under the full modular group, and we confirm the recent observation that the $S$-transform of the Schur index in Lagrangian theories exhibits logarithmic behavior. Finally, we comment on how locally our background reproduces the $Omega$-background.
215 - Luca Cassia , Maxim Zabzine 2021
We consider the matrix model of $U(N)$ refined Chern-Simons theory on $S^3$ for the unknot. We derive a $q$-difference operator whose insertion in the matrix integral reproduces an infinite set of Ward identities which we interpret as $q$-Virasoro co nstraints. The constraints are rewritten as difference equations for the generating function of Wilson loop expectation values which we solve as a recursion for the correlators of the model. The solution is repackaged in the form of superintegrability formulas for Macdonald polynomials. Additionally, we derive an equivalent $q$-difference operator for a similar refinement of ABJ theory and show that the corresponding $q$-Virasoro constraints are equal to those of refined Chern-Simons for a gauge super-group $U(N|M)$. Our equations and solutions are manifestly symmetric under Langlands duality $qleftrightarrow t^{-1}$ which correctly reproduces 3d Seiberg duality when $q$ is a specific root of unity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا