ﻻ يوجد ملخص باللغة العربية
Sequence alignment supports numerous tasks in bioinformatics, natural language processing, pattern recognition, social sciences, and others fields. While the alignment of two sequences may be performed swiftly in many applications, the simultaneous alignment of multiple sequences proved to be naturally more intricate. Although most multiple sequence alignment (MSA) formulations are NP-hard, several approaches have been developed, as they can outperform pairwise alignment methods or are necessary for some applications. Taking into account not only similarities but also the lengths of the compared sequences (i.e. normalization) can provide better alignment results than both unnormalized or post-normalized approaches. While some normalized methods have been developed for pairwise sequence alignment, none have been proposed for MSA. This work is a first effort towards the development of normalized methods for MSA. We discuss multiple aspects of normalized multiple sequence alignment (NMSA). We define three new criteria for computing normalized scores when aligning multiple sequences, showing the NP-hardness and exact algorithms for solving the NMSA using those criteria. In addition, we provide approximation algorithms for MSA and NMSA for some classes of scoring matrices.
Oxford Nanopore MinION sequencer is currently the smallest sequencing device available. While being able to produce very long reads (reads of up to 100~kbp were reported), it is prone to high sequencing error rates of up to 30%. Since most of these e
Sequence classification algorithms, such as SVM, require a definition of distance (similarity) measure between two sequences. A commonly used notion of similarity is the number of matches between $k$-mers ($k$-length subsequences) in the two sequence
We consider the distributed version of the Multiple Knapsack Problem (MKP), where $m$ items are to be distributed amongst $n$ processors, each with a knapsack. We propose different distributed approximation algorithms with a tradeoff between time and
This paper considers the k-sink location problem in dynamic path networks. In our model, a dynamic path network consists of an undirected path with positive edge lengths, uniform edge capacity, and positive vertex supplies. Here, each vertex supply c
Variational quantum algorithms (VQAs) are promising methods that leverage noisy quantum computers and classical computing techniques for practical applications. In VQAs, the classical optimizers such as gradient-based optimizers are utilized to adjus