ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed Approximation Algorithms for the Multiple Knapsack Problem

232   0   0.0 ( 0 )
 نشر من قبل Shrisha Rao
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the distributed version of the Multiple Knapsack Problem (MKP), where $m$ items are to be distributed amongst $n$ processors, each with a knapsack. We propose different distributed approximation algorithms with a tradeoff between time and message complexities. The algorithms are based on the greedy approach of assigning the best item to the knapsack with the largest capacity. These algorithms obtain a solution with a bound of $frac{1}{n+1}$ times the optimum solution, with either $mathcal{O}left(mlog nright)$ time and $mathcal{O}left(m nright)$ messages, or $mathcal{O}left(mright)$ time and $mathcal{O}left(mn^{2}right)$ messages.



قيم البحث

اقرأ أيضاً

We introduce and study a discrete multi-period extension of the classical knapsack problem, dubbed generalized incremental knapsack. In this setting, we are given a set of $n$ items, each associated with a non-negative weight, and $T$ time periods wi th non-decreasing capacities $W_1 leq dots leq W_T$. When item $i$ is inserted at time $t$, we gain a profit of $p_{it}$; however, this item remains in the knapsack for all subsequent periods. The goal is to decide if and when to insert each item, subject to the time-dependent capacity constraints, with the objective of maximizing our total profit. Interestingly, this setting subsumes as special cases a number of recently-studied incremental knapsack problems, all known to be strongly NP-hard. Our first contribution comes in the form of a polynomial-time $(frac{1}{2}-epsilon)$-approximation for the generalized incremental knapsack problem. This result is based on a reformulation as a single-machine sequencing problem, which is addressed by blending dynamic programming techniques and the classical Shmoys-Tardos algorithm for the generalized assignment problem. Combined with further enumeration-based self-reinforcing ideas and newly-revealed structural properties of nearly-optimal solutions, we turn our basic algorithm into a quasi-polynomial time approximation scheme (QPTAS). Hence, under widely believed complexity assumptions, this finding rules out the possibility that generalized incremental knapsack is APX-hard.
95 - Bo Sun , Ali Zeynali , Tongxin Li 2020
We introduce and study a general version of the fractional online knapsack problem with multiple knapsacks, heterogeneous constraints on which items can be assigned to which knapsack, and rate-limiting constraints on the assignment of items to knapsa cks. This problem generalizes variations of the knapsack problem and of the one-way trading problem that have previously been treated separately, and additionally finds application to the real-time control of electric vehicle (EV) charging. We introduce a new algorithm that achieves a competitive ratio within an additive factor of one of the best achievable competitive ratios for the general problem and matches or improves upon the best-known competitive ratio for special cases in the knapsack and one-way trading literatures. Moreover, our analysis provides a novel approach to online algorithm design based on an instance-dependent primal-dual analysis that connects the identification of worst-case instances to the design of algorithms. Finally, we illustrate the proposed algorithm via trace-based experiments of EV charging.
212 - Kang Ning , Hon Wai Leong 2009
Sequences set is a mathematical model used in many applications. As the number of the sequences becomes larger, single sequence set model is not appropriate for the rapidly increasing problem sizes. For example, more and more text processing applicat ions separate a single big text file into multiple files before processing. For these applications, the underline mathematical model is multiple sequences sets (MSS). Though there is increasing use of MSS, there is little research on how to process MSS efficiently. To process multiple sequences sets, sequences are first distributed to different sets, and then sequences for each set are processed. Deriving effective algorithm for MSS processing is both interesting and challenging. In this paper, we have defined the cost functions and performance ratio for analysis of the quality of synthesis sequences. Based on these, the problem of Process of Multiple Sequences Sets (PMSS) is formulated. We have first proposed two greedy algorithms for the PMSS problem, which are based on generalization of algorithms for single sequences set. Then based on the analysis of the characteristics of multiple sequences sets, we have proposed the Distribution and Deposition (DDA) algorithm and DDA* algorithm for PMSS problem. In DDA algorithm, the sequences are first distributed to multiple sets according to their alphabet contents; then sequences in each set are deposited by the deposition algorithm. The DDA* algorithm differs from the DDA algorithm in that the DDA* algorithm distributes sequences by clustering based on sequence profiles. Experiments show that DDA and DDA* always output results with smaller costs than other algorithms, and DDA* outperforms DDA in most instances. The DDA and DDA* algorithms are also efficient both in time and space.
We address the fundamental network design problem of constructing approximate minimum spanners. Our contributions are for the distributed setting, providing both algorithmic and hardness results. Our main hardness result shows that an $alpha$-appro ximation for the minimum directed $k$-spanner problem for $k geq 5$ requires $Omega(n /sqrt{alpha}log{n})$ rounds using deterministic algorithms or $Omega(sqrt{n }/sqrt{alpha}log{n})$ rounds using randomized ones, in the CONGEST model of distributed computing. Combined with the constant-round $O(n^{epsilon})$-approximation algorithm in the LOCAL model of [Barenboim, Elkin and Gavoille, 2016], as well as a polylog-round $(1+epsilon)$-approximation algorithm in the LOCAL model that we show here, our lower bounds for the CONGEST model imply a strict separation between the LOCAL and CONGEST models. Notably, to the best of our knowledge, this is the first separation between these models for a local approximation problem. Similarly, a separation between the directed and undirected cases is implied. We also prove a nearly-linear lower bound for the minimum weighted $k$-spanner problem for $k geq 4$, and we show lower bounds for the weighted 2-spanner problem. On the algorithmic side, apart from the aforementioned $(1+epsilon)$-approximation algorithm for minimum $k$-spanners, our main contribution is a new distributed construction of minimum 2-spanners that uses only polynomial local computations. Our algorithm has a guaranteed approximation ratio of $O(log(m/n))$ for a graph with $n$ vertices and $m$ edges, which matches the best known ratio for polynomial time sequential algorithms [Kortsarz and Peleg, 1994], and is tight if we restrict ourselves to polynomial local computations. Our approach allows us to extend our algorithm to work also for the directed, weighted, and client-server variants of the problem.
It was recently shown that a version of the greedy algorithm gives a construction of fault-tolerant spanners that is size-optimal, at least for vertex faults. However, the algorithm to construct this spanner is not polynomial-time, and the best-known polynomial time algorithm is significantly suboptimal. Designing a polynomial-time algorithm to construct (near-)optimal fault-tolerant spanners was given as an explicit open problem in the two most recent papers on fault-tolerant spanners ([Bodwin, Dinitz, Parter, Vassilevka Williams SODA 18] and [Bodwin, Patel PODC 19]). We give a surprisingly simple algorithm which runs in polynomial time and constructs fault-tolerant spanners that are extremely close to optimal (off by only a linear factor in the stretch) by modifying the greedy algorithm to run in polynomial time. To complement this result, we also give simple distributed constructions in both the LOCAL and CONGEST models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا