ﻻ يوجد ملخص باللغة العربية
Oxford Nanopore MinION sequencer is currently the smallest sequencing device available. While being able to produce very long reads (reads of up to 100~kbp were reported), it is prone to high sequencing error rates of up to 30%. Since most of these errors are insertions or deletions, it is very difficult to adapt popular seed-based algorithms designed for aligning data sets with much lower error rates. Base calling of MinION reads is typically done using hidden Markov models. In this paper, we propose to represent each sequencing read by an ensemble of sequences sampled from such a probabilistic model. This approach can improve the sensitivity and false positive rate of seeding an alignment compared to using a single representative base call sequence for each read.
Sequence alignment supports numerous tasks in bioinformatics, natural language processing, pattern recognition, social sciences, and others fields. While the alignment of two sequences may be performed swiftly in many applications, the simultaneous a
Recent technological advances in Next Generation Sequencing tools have led to increasing speeds of DNA sample collection, preparation, and sequencing. One instrument can produce over 600 Gb of genetic sequence data in a single run. This creates new o
We present the Scalable Nucleotide Alignment Program (SNAP), a new short and long read aligner that is both more accurate (i.e., aligns more reads with fewer errors) and 10-100x faster than state-of-the-art tools such as BWA. Unlike recent aligners b
Transcriptome assembly from RNA-Seq reads is an active area of bioinformatics research. The ever-declining cost and the increasing depth of RNA-Seq have provided unprecedented opportunities to better identify expressed transcripts. However, the nonli
The decreasing costs and increasing speed and accuracy of DNA sample collection, preparation, and sequencing has rapidly produced an enormous volume of genetic data. However, fast and accurate analysis of the samples remains a bottleneck. Here we pre