ﻻ يوجد ملخص باللغة العربية
We argue against the use of generally weighted moving average (GWMA) control charts. Our primary reasons are the following: 1) There is no recursive formula for the GWMA control chart statistic, so all previous data must be stored and used in the calculation of each chart statistic. 2) The Markovian property does not apply to the GWMA statistics, so computer simulation must be used to determine control limits and the statistical performance. 3) An appropriately designed, and much simpler, exponentially weighted moving average (EWMA) chart provides as good or better statistical performance. 4) In some cases the GWMA chart gives more weight to past data values than to current values.
We give the distribution of $M_n$, the maximum of a sequence of $n$ observations from a moving average of order 1. Solutions are first given in terms of repeated integrals and then for the case where the underlying independent random variables have a
We give the distribution of $M_n$, the maximum of a sequence of $n$ observations from a moving average of order 1. Solutions are first given in terms of repeated integrals and then for the case where the underlying independent random variables are di
A multivariate control chart is designed to monitor process parameters of multiple correlated quality characteristics. Often data on multivariate processes are collected as individual observations, i.e. as vectors one at the time. Various control cha
We consider the problem of computing shortest paths in weighted unit-disk graphs in constant dimension $d$. Although the single-source and all-pairs variants of this problem are well-studied in the plane case, no non-trivial exact distance oracles fo
Let ${s_n}_{ninmathbb{N}}$ be a decreasing nonsummable sequence of positive reals. In this paper, we investigate the weighted Birkhoff average $frac{1}{S_n}sum_{k=0}^{n-1}s_kphi(T^kx)$ on aperiodic irreducible subshift of finite type $Sigma_{bf A}$ w