ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectrum of weighted Birkhoff average

128   0   0.0 ( 0 )
 نشر من قبل Bal\\'azs B\\'ar\\'any Dr.
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let ${s_n}_{ninmathbb{N}}$ be a decreasing nonsummable sequence of positive reals. In this paper, we investigate the weighted Birkhoff average $frac{1}{S_n}sum_{k=0}^{n-1}s_kphi(T^kx)$ on aperiodic irreducible subshift of finite type $Sigma_{bf A}$ where $phi: Sigma_{bf A}mapsto mathbb{R}$ is a continuous potential. Firstly, we show the entropy spectrum of the weighed Birkhoff averages remains the same as that of the Birkhoff averages. Then we prove that the packing spectrum of the weighed Birkhoff averages equals to either that of the Birkhoff averages or the whole space.



قيم البحث

اقرأ أيضاً

In this paper, we study the topological spectrum of weighted Birkhoff averages over aperiodic and irreducible subshifts of finite type. We show that for a uniformly continuous family of potentials, the spectrum is continuous and concave over its doma in. In case of typical weights with respect to some ergodic quasi-Bernoulli measure, we determine the spectrum. Moreover, in case of full shift and under the assumption that the potentials depend only on the first coordinate, we show that our result is applicable for regular weights, like Mobius sequence.
For piecewise monotone interval maps we look at Birkhoff spectra for regular potential functions. This means considering the Hausdorff dimension of the set of points for which the Birkhoff average of the potential takes a fixed value. In the uniforml y hyperbolic case we obtain complete results, in the case with parabolic behaviour we are able to describe the part of the sets where the lower Lyapunov exponent is positive. In addition we give some lower bounds on the full spectrum in this case. This is an extension of work of Hofbauer on the entropy and Lyapunov spectra.
We study Birkhoff sums as distributions. We obtain regularity results on such distributions for various dynamical systems with hyperbolicity, as hyperbolic linear maps on the torus and piecewise expanding maps on the interval. We also give some appli cations, as the study of advection in discrete dynamical systems.
We show that Sarnaks conjecture on Mobius disjointness holds in every uniquely ergodic modelof a quasi-discrete spectrum automorphism. A consequence of this result is that, for each non constant polynomial $PinR[x]$ with irrational leading coefficien t and for each multiplicative function $bnu:NtoC$, $|bnu|leq1$, we have[ frac{1}{M} sum_{Mle mtextless{}2M} frac{1}{H} left| sum_{mle n textless{} m+H} e^{2pi iP(n)}bnu(n) right|longrightarrow 0 ] as $Mtoinfty$, $Htoinfty$, $H/Mto 0$.
We prove that the Hausdorff dimension of the set of three-period orbits in classical billiards is at most one. Moreover, if the set of three-period orbits has Hausdorff dimension one, then it has a tangent line at almost every point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا