ﻻ يوجد ملخص باللغة العربية
Let ${s_n}_{ninmathbb{N}}$ be a decreasing nonsummable sequence of positive reals. In this paper, we investigate the weighted Birkhoff average $frac{1}{S_n}sum_{k=0}^{n-1}s_kphi(T^kx)$ on aperiodic irreducible subshift of finite type $Sigma_{bf A}$ where $phi: Sigma_{bf A}mapsto mathbb{R}$ is a continuous potential. Firstly, we show the entropy spectrum of the weighed Birkhoff averages remains the same as that of the Birkhoff averages. Then we prove that the packing spectrum of the weighed Birkhoff averages equals to either that of the Birkhoff averages or the whole space.
In this paper, we study the topological spectrum of weighted Birkhoff averages over aperiodic and irreducible subshifts of finite type. We show that for a uniformly continuous family of potentials, the spectrum is continuous and concave over its doma
For piecewise monotone interval maps we look at Birkhoff spectra for regular potential functions. This means considering the Hausdorff dimension of the set of points for which the Birkhoff average of the potential takes a fixed value. In the uniforml
We study Birkhoff sums as distributions. We obtain regularity results on such distributions for various dynamical systems with hyperbolicity, as hyperbolic linear maps on the torus and piecewise expanding maps on the interval. We also give some appli
We show that Sarnaks conjecture on Mobius disjointness holds in every uniquely ergodic modelof a quasi-discrete spectrum automorphism. A consequence of this result is that, for each non constant polynomial $PinR[x]$ with irrational leading coefficien
We prove that the Hausdorff dimension of the set of three-period orbits in classical billiards is at most one. Moreover, if the set of three-period orbits has Hausdorff dimension one, then it has a tangent line at almost every point.