ﻻ يوجد ملخص باللغة العربية
Loebl, Komlos, and Sos conjectured that any graph with at least half of its vertices of degree at least k contains every tree with at most k edges. We propose a version of this conjecture for skewed trees, i.e., we consider the class of trees with at most k edges such that the sizes of the colour classes of the trees have a given ratio. We show that our conjecture is asymptotically correct for dense graphs. The proof relies on the regularity method. Our result implies bounds on Ramsey number of several trees of given skew.
We prove a version of the Loebl-Komlos-Sos Conjecture for dense graphs. For each q>0 there exists a number $n_0in mathbb{N}$ such that for any n>n_0 and k>qn the following holds: if G be a graph of order n with at least n/2 vertices of degree at leas
Loebl, Komlos and Sos conjectured that every $n$-vertex graph $G$ with at least $n/2$ vertices of degree at least $k$ contains each tree $T$ of order $k+1$ as a subgraph. We give a sketch of a proof of the approximate version of this conjecture for l
Loebl, Komlos, and Sos conjectured that if at least half the vertices of a graph G have degree at least some k, then every tree with at most k edges is a subgraph of G. We prove the conjecture for all trees of diameter at most 5 and for a class of ca
In a series of four papers we prove the following relaxation of the Loebl-Komlos-Sos Conjecture: For every $alpha>0$ there exists a number $k_0$ such that for every $k>k_0$ every $n$-vertex graph $G$ with at least $(frac12+alpha)n$ vertices of degree
This is the third of a series of four papers in which we prove the following relaxation of the Loebl-Komlos-Sos Conjecture: For every $alpha>0$ there exists a number $k_0$ such that for every $k>k_0$ every $n$-vertex graph $G$ with at least $(frac12+