ﻻ يوجد ملخص باللغة العربية
Minimum $k$-Section denotes the NP-hard problem to partition the vertex set of a graph into $k$ sets of sizes as equal as possible while minimizing the cut width, which is the number of edges between these sets. When $k$ is an input parameter and $n$ denotes the number of vertices, it is NP-hard to approximate the width of a minimum $k$-section within a factor of $n^c$ for any $c<1$, even when restricted to trees with constant diameter. Here, we show that every tree $T$ allows a $k$-section of width at most $(k-1) (2 + 16n / diam(T) ) Delta(T)$. This implies a polynomial-time constant-factor approximation for the Minimum $k$-Section Problem when restricted to trees with linear diameter and constant maximum degree. Moreover, we extend our results from trees to arbitrary graphs with a given tree decomposition.
The weight of a subgraph $H$ in $G$ is the sum of the degrees in $G$ of vertices of $H$. The {em height} of a subgraph $H$ in $G$ is the maximum degree of vertices of $H$ in $G$. A star in a given graph is minor if its center has degree at most five
Given a positive integer $s$, the $s$-colour size-Ramsey number of a graph $H$ is the smallest integer $m$ such that there exists a graph $G$ with $m$ edges with the property that, in any colouring of $E(G)$ with $s$ colours, there is a monochromatic
Tree-width and its linear variant path-width play a central role for the graph minor relation. In particular, Robertson and Seymour (1983) proved that for every tree~$T$, the class of graphs that do not contain $T$ as a minor has bounded path-width.
Minimum Bisection denotes the NP-hard problem to partition the vertex set of a graph into two sets of equal sizes while minimizing the width of the bisection, which is defined as the number of edges between these two sets. We first consider this prob
We study optimal minimum degree conditions when an $n$-vertex graph $G$ contains an $r$-regular $r$-connected subgraph. We prove for $r$ fixed and $n$ large the condition to be $delta(G) ge frac{n+r-2}{2}$ when $nr equiv 0 pmod 2$. This answers a question of M.~Kriesell.