ﻻ يوجد ملخص باللغة العربية
Axion is a promising candidate for ultralight dark matter which may cause a polarization rotation of laser light. Recently, a new idea of probing the axion dark matter by optical linear cavities used in the arms of gravitational wave detectors has been proposed [Phys. Rev. Lett. 123, 111301 (2019)]. In this article, a realistic scheme of the axion dark matter search with the arm cavity transmission ports is revisited. Since photons detected by the transmission ports travel in the cavity for odd-number of times, the effect of axion dark matter on their phases is not cancelled out and the sensitivity at low-mass range is significantly improved compared to the search using reflection ports. We also take into account the stochastic nature of the axion field and the availability of the two detection ports in the gravitational wave detectors. The sensitivity to the axion-photon coupling, $g_{agamma}$, of the ground-based gravitational wave detector, such as Advanced LIGO, with 1-year observation is estimated to be $g_{agamma} sim 3times10^{-12}$ GeV$^{-1}$ below the axion mass of $10^{-15}$ eV, which improves upon the limit achieved by the CERN Axion Solar Telescope.
The $mu$eV axion is a well-motivated extension to the standard model. The Axion Dark Matter eXperiment (ADMX) collaboration seeks to discover this particle by looking for the resonant conversion of dark-matter axions to microwave photons in a strong
Motivated by aLIGOs recent discovery of gravitational waves we discuss signatures of new physics that could be seen at ground and space-based interferometers. We show that a first order phase transition in a dark sector would lead to a detectable gra
We show that gravitational wave detectors based on a type of atom interferometry are sensitive to ultralight scalar dark matter. Such dark matter can cause temporal oscillations in fundamental constants with a frequency set by the dark matter mass, a
We study the underlying theory of dielectric haloscopes, a new way to detect dark matter axions. When an interface between different dielectric media is inside a magnetic field, the oscillating axion field acts as a source of electromagnetic waves, w
We discuss several low-energy backgrounds to sub-GeV dark matter searches, which arise from high-energy particles of cosmic or radioactive origin that interact with detector materials. We focus on Cherenkov radiation, transition radiation, and lumine