ﻻ يوجد ملخص باللغة العربية
Motivated by aLIGOs recent discovery of gravitational waves we discuss signatures of new physics that could be seen at ground and space-based interferometers. We show that a first order phase transition in a dark sector would lead to a detectable gravitational wave signal at future experiments, if the phase transition has occurred at temperatures few orders of magnitude higher than the electroweak scale. The source of gravitational waves in this case is associated with the dynamics of expanding and colliding bubbles in the early universe. At the same time we point out that topological defects, such as dark sector domain walls, may generate a detectable signal already at aLIGO. Both -- bubble and domain wall -- scenarios are sourced by semi-classical configurations of a dark new physics sector. In the first case the gravitational wave signal originates from bubble wall collisions and subsequent turbulence in hot plasma in the early universe, while the second case corresponds to domain walls passing through the interferometer at present and is not related to gravitational waves. We find that aLIGO at its current sensitivity can detect smoking-gun signatures from domain wall interactions, while future proposed experiments including the fifth phase of aLIGO at design sensitivity can probe dark sector phase transitions.
The relic gravitational wave background due to tensor linear perturbations generated during Higgs inflation is computed. Both the Standard Model and a well-motivated phenomenological completion (that accounts for all the experimentally confirmed evid
We study the stochastic background of gravitational waves which accompany the sudden freeze-out of dark matter triggered by a cosmological first order phase transition that endows dark matter with mass. We consider models that produce the measured da
We study the spectrum of gravitational waves produced by a first order phase transition in a hidden sector that is colder than the visible sector. In this scenario, bubbles of the hidden sector vacuum can be nucleated through either thermal fluctuati
We discuss the prospects of gravitational lensing of gravitational waves (GWs) coming from core-collapse supernovae (CCSN). As the CCSN GW signal can only be detected from within our own Galaxy and the local group by current and upcoming ground-based
Fermion dark matter particles can aggregate to form extended dark matter structures via a first-order phase transition in which the particles get trapped in the false vacuum. We study Fermi balls created in a phase transition induced by a generic qua