ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for light scalar dark matter with atomic gravitational wave detectors

109   0   0.0 ( 0 )
 نشر من قبل Ken Van Tilburg
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that gravitational wave detectors based on a type of atom interferometry are sensitive to ultralight scalar dark matter. Such dark matter can cause temporal oscillations in fundamental constants with a frequency set by the dark matter mass, and amplitude determined by the local dark matter density. The result is a modulation of atomic transition energies. This signal is ideally suited to a type of gravitational wave detector that compares two spatially separated atom interferometers referenced by a common laser. Such a detector can improve on current searches for electron-mass or electric-charge modulus dark matter by up to 10 orders of magnitude in coupling, in a frequency band complementary to that of other proposals. It demonstrates that this class of atomic sensors is qualitatively different from other gravitational wave detectors, including those based on laser interferometry. By using atomic-clock-like interferometers, laser noise is mitigated with only a single baseline. These atomic sensors can thus detect scalar signals in addition to tensor signals.



قيم البحث

اقرأ أيضاً

We report new limits on ultralight scalar dark matter (DM) with dilaton-like couplings to photons that can induce oscillations in the fine-structure constant alpha. Atomic dysprosium exhibits an electronic structure with two nearly degenerate levels whose energy splitting is sensitive to changes in alpha. Spectroscopy data for two isotopes of dysprosium over a two-year span is analyzed for coherent oscillations with angular frequencies below 1 rad/s. No signal consistent with a DM coupling is identified, leading to new constraints on dilaton-like photon couplings over a wide mass range. Under the assumption that the scalar field comprises all of the DM, our limits on the coupling exceed those from equivalence-principle tests by up to 4 orders of magnitude for masses below 3 * 10^-18 eV. Excess oscillatory power, inconsistent with fine-structure variation, is detected in a control channel, and is likely due to a systematic effect. Our atomic spectroscopy limits on DM are the first of their kind, and leave substantial room for improvement with state-of-the-art atomic clocks.
We investigate the thermal cosmology and terrestrial and astrophysical phenomenology of a sub-GeV hadrophilic dark sector. The specific construction explored in this work features a Dirac fermion dark matter candidate interacting with a light scalar mediator that dominantly couples to the up-quark. The correct freeze-out relic abundance may be achieved via dark matter annihilation directly to hadrons or through secluded annihilation to scalar mediators. A rich and distinctive phenomenology is present in this scenario, with probes arising from precision meson decays, proton beam dump experiments, colliders, direct detection experiments, supernovae, and nucleosynthesis. In the future, experiments such as NA62, REDTOP, SHiP, SBND, and NEWS-G will be able to explore a significant portion of the cosmologically motivated parameter space.
The fine-structure constant and the electron mass in string theory are determined by the values of scalar fields called moduli. If the dark matter takes on the form of such a light modulus, it oscillates with a frequency equal to its mass and an ampl itude determined by the local dark-matter density. This translates into an oscillation of the size of a solid that can be observed by resonant-mass antennas. Existing and planned experiments, combined with a dedicated resonant-mass detector proposed in this Letter, can probe dark-matter moduli with frequencies between 1 kHz and 1 GHz, with much better sensitivity than searches for fifth forces.
We systematically study models with light scalar and pseudoscalar dark matter candidates and their potential signals at the LHC. First, we derive cosmological bounds on models with the Standard Model Higgs mediator and with a new weak-scale mediator. Next, we study two processes inspired by the indirect and direct detection process topologies, now happening inside the LHC detectors. We find that LHC can observe very light dark matter over a huge mass range if it is produced in mediator decays and then scatters with the detector material to generate jets in the nuclear recoil.
We consider a neutrino Two Higgs Doublet Model ($ u$THDM) in which neutrinos obtain {it naturally} small Dirac masses from the soft symmetry breaking of a global $U(1)_X$ symmetry. We extended the model so the soft term is generated by the spontaneou s breaking of $U(1)_X$ by a new scalar field. The symmetry breaking pattern can also stabilize a scalar dark matter candidate. After constructing the model, we study the phenomenology of the dark matter: relic density, direct and indirect detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا