ﻻ يوجد ملخص باللغة العربية
This paper investigates the theoretical and empirical performance of Fisher-Pitman-type permutation tests for assessing the equality of unknown Poisson mixture distributions. Building on nonparametric maximum likelihood estimators (NPMLEs) of the mixing distribution, these tests are theoretically shown to be able to adapt to complicated unspecified structures of count data and also consistent against their corresponding ANOVA-type alternatives; the latter is a result in parallel to classic claims made by Robinson (Robinson, 1973). The studied methods are then applied to a single-cell RNA-seq data obtained from different cell types from brain samples of autism subjects and healthy controls; empirically, they unveil genes that are differentially expressed between autism and control subjects yet are missed using common tests. For justifying their use, rate optimality of NPMLEs is also established in settings similar to nonparametric Gaussian (Wu and Yang, 2020a) and binomial mixtures (Tian et al., 2017; Vinayak et al., 2019).
Classical two-sample permutation tests for equality of distributions have exact size in finite samples, but they fail to control size for testing equality of parameters that summarize each distribution. This paper proposes permutation tests for equal
A new family of nonparametric statistics, the r-statistics, is introduced. It consists of counting the number of records of the cumulative sum of the sample. The single-sample r-statistic is almost as powerful as Students t-statistic for Gaussian and
Conditional density estimation generalizes regression by modeling a full density f(yjx) rather than only the expected value E(yjx). This is important for many tasks, including handling multi-modality and generating prediction intervals. Though fundam
Inverse probability weighted estimators are the oldest and potentially most commonly used class of procedures for the estimation of causal effects. By adjusting for selection biases via a weighting mechanism, these procedures estimate an effect of in
In this paper, we generalize the metric-based permutation test for the equality of covariance operators proposed by Pigoli et al. (2014) to the case of multiple samples of functional data. To this end, the non-parametric combination methodology of Pe