ﻻ يوجد ملخص باللغة العربية
Inverse probability weighted estimators are the oldest and potentially most commonly used class of procedures for the estimation of causal effects. By adjusting for selection biases via a weighting mechanism, these procedures estimate an effect of interest by constructing a pseudo-population in which selection biases are eliminated. Despite their ease of use, these estimators require the correct specification of a model for the weighting mechanism, are known to be inefficient, and suffer from the curse of dimensionality. We propose a class of nonparametric inverse probability weighted estimators in which the weighting mechanism is estimated via undersmoothing of the highly adaptive lasso, a nonparametric regression function proven to converge at $n^{-1/3}$-rate to the true weighting mechanism. We demonstrate that our estimators are asymptotically linear with variance converging to the nonparametric efficiency bound. Unlike doubly robust estimators, our procedures require neither derivation of the efficient influence function nor specification of the conditional outcome model. Our theoretical developments have broad implications for the construction of efficient inverse probability weighted estimators in large statistical models and a variety of problem settings. We assess the practical performance of our estimators in simulation studies and demonstrate use of our proposed methodology with data from a large-scale epidemiologic study.
Propensity score (PS) based estimators are increasingly used for causal inference in observational studies. However, model selection for PS estimation in high-dimensional data has received little attention. In these settings, PS models have tradition
Estimation of a precision matrix (i.e., inverse covariance matrix) is widely used to exploit conditional independence among continuous variables. The influence of abnormal observations is exacerbated in a high dimensional setting as the dimensionalit
Bayesian nonparametric priors based on completely random measures (CRMs) offer a flexible modeling approach when the number of latent components in a dataset is unknown. However, managing the infinite dimensionality of CRMs typically requires practit
We propose a new method for dimension reduction in regression using the first two inverse moments. We develop corresponding weighted chi-squared tests for the dimension of the regression. The proposed method considers linear combinations of Sliced In
Least Absolute Shrinkage and Selection Operator or the Lasso, introduced by Tibshirani (1996), is a popular estimation procedure in multiple linear regression when underlying design has a sparse structure, because of its property that it sets some re