ﻻ يوجد ملخص باللغة العربية
Classical two-sample permutation tests for equality of distributions have exact size in finite samples, but they fail to control size for testing equality of parameters that summarize each distribution. This paper proposes permutation tests for equality of parameters that are estimated at root-n or slower rates. Our general framework applies to both parametric and nonparametric models, with two samples or one sample split into two subsamples. Our tests have correct size asymptotically while preserving exact size in finite samples when distributions are equal. They have no loss in local-asymptotic power compared to tests that use asymptotic critical values. We propose confidence sets with correct coverage in large samples that also have exact coverage in finite samples if distributions are equal up to a transformation. We apply our theory to four commonly-used hypothesis tests of nonparametric functions evaluated at a point. Lastly, simulations show good finite sample properties of our tests.
Economic data are often generated by stochastic processes that take place in continuous time, though observations may occur only at discrete times. For example, electricity and gas consumption take place in continuous time. Data generated by a contin
This paper proposes a new estimator for selecting weights to average over least squares estimates obtained from a set of models. Our proposed estimator builds on the Mallows model average (MMA) estimator of Hansen (2007), but, unlike MMA, simultaneou
We propose a generalization of the linear panel quantile regression model to accommodate both textit{sparse} and textit{dense} parts: sparse means while the number of covariates available is large, potentially only a much smaller number of them have
One of the major concerns of targeting interventions on individuals in social welfare programs is discrimination: individualized treatments may induce disparities on sensitive attributes such as age, gender, or race. This paper addresses the question
Inverse Probability Weighting (IPW) is widely used in empirical work in economics and other disciplines. As Gaussian approximations perform poorly in the presence of small denominators, trimming is routinely employed as a regularization strategy. How