ﻻ يوجد ملخص باللغة العربية
Floquet spin chains have been a venue for understanding topological states of matter that are qualitatively different from their static counterparts by, for example, hosting $pi$ edge modes that show stable period-doubled dynamics. However the stability of these edge modes to interactions has traditionally required the system to be many-body localized in order to suppress heating. In contrast, here we show that even in the absence of disorder, and in the presence of bulk heating, $pi$ edge modes are long lived. Their lifetime is extracted from exact diagonalization and is found to be non-perturbative in the interaction strength. A tunneling estimate for the lifetime is obtained by mapping the stroboscopic time-evolution to dynamics of a single particle in Krylov subspace. In this subspace, the $pi$ edge mode manifests as the quasi-stable edge mode of an inhomogeneous Su-Schrieffer-Heeger model whose dimerization vanishes in the bulk of the Krylov chain.
Integrable Floquet spin chains are known to host strong zero and $pi$ modes which are boundary operators that respectively commute and anticommute with the Floquet unitary generating stroboscopic time-evolution, in addition to anticommuting with a di
Certain periodically driven quantum many-particle systems in one dimension are known to exhibit edge modes that are related to topological properties and lead to approximate degeneracies of the Floquet spectrum. A similar situation occurs in spin cha
Harnessing power-law interactions ($1/r^alpha$) in a large variety of physical systems are increasing. We study the dynamics of chiral spin chains as a possible multi-directional quantum channel. This arises from the nonlinear character of the disper
We construct an example of a 1$d$ quasiperiodically driven spin chain whose edge states can coherently store quantum information, protected by a combination of localization, dynamics, and topology. Unlike analogous behavior in static and periodically
We propose and analyse a scheme for performing a long-range entangling gate for qubits encoded in electron spins trapped in semiconductor quantum dots. Our coupling makes use of an electrostatic interaction between the state-dependent charge configur