ﻻ يوجد ملخص باللغة العربية
Integrable Floquet spin chains are known to host strong zero and $pi$ modes which are boundary operators that respectively commute and anticommute with the Floquet unitary generating stroboscopic time-evolution, in addition to anticommuting with a discrete symmetry of the Floquet unitary. Thus the existence of strong modes imply a characteristic pairing structure of the full spectrum. Weak interactions modify the strong modes to almost strong modes that almost commute or anticommute with the Floquet unitary. Manifestations of strong and almost strong modes are presented in two different Krylov subspaces. One is a Krylov subspace obtained from a Lanczos iteration that maps the Heisenberg time-evolution generated by the Floquet Hamiltonian onto dynamics of a single particle on a fictitious chain with nearest neighbor hopping. The second is a Krylov subspace obtained from the Arnoldi iteration that maps the Heisenberg time-evolution generated directly by the Floquet unitary onto dynamics of a single particle on a fictitious chain with longer range hopping. While the former Krylov subspace is sensitive to the branch of the logarithm of the Floquet unitary, the latter obtained from the Arnoldi scheme is not. The effective single particle models obtained in the two Krylov subspaces are discussed, and the topological properties of the Krylov chain that ensure stable $0$ and $pi$ modes at the boundaries are highlighted. The role of interactions is discussed. Expressions for the lifetime of the almost strong modes are derived in terms of the parameters of the Krylov subspace, and are compared with exact diagonalization.
Certain periodically driven quantum many-particle systems in one dimension are known to exhibit edge modes that are related to topological properties and lead to approximate degeneracies of the Floquet spectrum. A similar situation occurs in spin cha
Floquet spin chains have been a venue for understanding topological states of matter that are qualitatively different from their static counterparts by, for example, hosting $pi$ edge modes that show stable period-doubled dynamics. However the stabil
Results are presented for the dynamics of an almost strong edge mode which is the quasi-stable Majorana edge mode occurring in non-integrable spin chains. The dynamics of the edge mode is studied using exact diagonalization, and compared with time-ev
We propose a method for controlling the exchange interactions of Mott insulators with strong spin-orbit coupling. We consider a multiorbital system with strong spin-orbit coupling and a circularly polarized light field and derive its effective Hamilt
Certain disorder-free Hamiltonians can be non-ergodic due to a emph{strong fragmentation} of the Hilbert space into disconnected sectors. Here, we characterize such systems by introducing the notion of `statistically localized integrals of motion (SL