ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological edge modes without symmetry in quasiperiodically driven spin chains

105   0   0.0 ( 0 )
 نشر من قبل Andrew Potter
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct an example of a 1$d$ quasiperiodically driven spin chain whose edge states can coherently store quantum information, protected by a combination of localization, dynamics, and topology. Unlike analogous behavior in static and periodically driven (Floquet) spin chains, this model does not rely upon microscopic symmetry protection: Instead, the edge states are protected purely by emergent dynamical symmetries. We explore the dynamical signatures of this Emergent Dynamical Symmetry-Protected Topological (EDSPT) order through exact numerics, time evolving block decimation, and analytic high-frequency expansion, finding evidence that the EDSPT is a stable dynamical phase protected by bulk many-body localization up to (at least) stretched-exponentially long time scales, and possibly beyond. We argue that EDSPTs are special to the quasiperiodically driven setting, and cannot arise in Floquet systems. Moreover, we find evidence of a new type of boundary criticality, in which the edge spin dynamics transition from quasiperiodic to chaotic, leading to bulk thermalization.



قيم البحث

اقرأ أيضاً

We construct and solve a two-dimensional, chirally symmetric model of Dirac cones subjected to a quasiperiodic modulation. In real space, this is realized with a quasiperiodic hopping term. This hopping model, as we show, at the Dirac node energy has a rich phase diagram with a semimetal-to-metal phase transition at intermediate amplitude of the quasiperiodic modulation, and a transition to a phase with a diverging density of states and sub-diffusive transport when the quasiperiodic hopping is strongest. We further demonstrate that the semimetal-to-metal phase transition can be characterized by the multifractal structure of eigenstates in momentum space and can be considered as a unique unfreezing transition. This unfreezing transition in momentum space generates flat bands with a dramatically renormalized bandwidth in the metallic phase similar to the phenomena of the band structure of twisted bilayer graphene at the magic angle. We characterize the nature of this transition numerically as well as analytically in terms of the formation of a band of topological zero modes. For pure quasiperiodic hopping, we provide strong numerical evidence that the low-energy density of states develops a divergence and the eigenstates exhibit Chalker (quantum-critical) scaling despite the model not being random. At particular commensurate limits the model realizes higher-order topological insulating phases. We discuss how these systems can be realized in experiments on ultracold atoms and metamaterials.
We show how a large family of interacting nonequilibrium phases of matter can arise from the presence of multiple time-translation symmetries, which occur by quasiperiodically driving an isolated quantum many-body system with two or more incommensura te frequencies. These phases are fundamentally different from those realizable in time-independent or periodically-driven (Floquet) settings. Focusing on high-frequency drives with smooth time-dependence, we rigorously establish general conditions for which these phases are stable in a parametrically long-lived `preheating regime. We develop a formalism to analyze the effect of the multiple time-translation symmetries on the dynamics of the system, which we use to classify and construct explicit examples of the emergent phases. In particular, we discuss time quasi-crystals which spontaneously break the time-translation symmetries, as well as time-translation symmetry protected topological phases.
The effects of downfolding a Brillouin zone can open gaps and quench the kinetic energy by flattening bands. Quasiperiodic systems are extreme examples of this process, which leads to new phases and critical eigenstates. We analytically and numerical ly investigate these effects in a two dimensional topological insulator with a quasiperiodic potential and discover a complex phase diagram. We study the nature of the resulting eigenstate quantum phase transitions; a quasiperiodic potential can make a trivial insulator topological and induce topological insulator-to-metal phase transitions through a unique universality class distinct from random systems. This wealth of critical behavior occurs concomitantly with the quenching of the kinetic energy, resulting in flat topological bands that could serve as a platform to realize the fractional quantum Hall effect without a magnetic field.
We reveal a continuous dynamical heating transition between a prethermal and an infinite-temperature stage in a clean, chaotic periodically driven classical spin chain. The transition time is a steep exponential function of the drive frequency, showi ng that the exponentially long-lived prethermal plateau, originally observed in quantum Floquet systems, survives the classical limit. Even though there is no straightforward generalization of Floquets theorem to nonlinear systems, we present strong evidence that the prethermal physics is well described by the inverse-frequency expansion. We relate the stability and robustness of the prethermal plateau to drive-induced synchronization not captured by the expansion. Our results set the pathway to transfer the ideas of Floquet engineering to classical many-body systems, and are directly relevant for photonic crystals and cold atom experiments in the superfluid regime.
By considering a cigar-shaped trapping potential elongated in a proper curvilinear coordinate, we discover a new form of wave localization which arises from the interplay of geometry and topological protection. The potential is modulated in its shape such that local curvature introduces a trapping potential. The curvature varies along the trap curvilinear axis encodes a topological Harper modulation. The varying geometry maps our system in a one-dimensional Andre-Aubry-Harper grating. We show that a mobility edge exists and topologically protected states arises. These states are extremely robust with respect to disorder in shape of the string. The results may be relevant for localization phenomena in Bose-Einstein condensates, optical fibers and waveguides, and new laser devices, but also for fundamental studies on string theory. Taking into account that the one-dimensional modulation mimic the existence of a additional dimensions, our system is the first example of physically realizable five-dimensional string.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا