ﻻ يوجد ملخص باللغة العربية
The formation of Uranus regular moons has been suggested to be linked to the origin of its enormous spin axial tilt (~98o). A giant impact between proto-Uranus and a 2-3 M_Earth impactor could lead to a large tilt and to the formation of a debris disc, where prograde and circular satellites are accreted. The most intriguing features of the current regular Uranian satellite system is that it possesses a positive trend in the mass-distance distribution and likely also in the bulk density, implying that viscous spreading of the debris disc after the giant impact plays a crucial role in shaping the architecture of the final system. In this paper, we investigate the formation of Uranus satellites by combining results of SPH simulations for the giant impact, a 1D semi-analytic disc model for viscous spreading of the post-impact debris disc, and N-body simulations for the assembly of satellites from a disc of moonlets. Assuming the condensed rock (i.e., silicate) remains small and available to stick onto the relatively rapid growing condensed water-ice, we find that the best case in reproducing the observed mass and bulk composition of Uranus satellite system is a pure-rocky impactor with 3 M_Earth colliding with the young Uranus with an impact parameter b = 0.75. Such an oblique collision could also naturally explain Uranus large tilt and possibly, its low internal heat flux. The giant impact scenario can naturally explain the key features of Uranus and its regular moons. We therefore suggest that the Uranian satellite system formed as a result of an impact rather than from a circumplanetary disc. Objects beyond the water snow-line could be dominated by rocky objects similar to Pluto and Triton. Future missions to Uranus and its satellite system would further constrain the properties of Uranus and its moons and provide further insight on their formation processes.
Satellites of giant planets thought to form in gaseous circumplanetary disks (CPDs) during the late planet-formation phase, but it was unknown so far whether smaller mass planets, such as the ice giants could form such disks, thus moons there. We com
The large and tidally-locked classical moons of Uranus display longitudinal and planetocentric trends in their surface compositions. Spectrally red material has been detected primarily on the leading hemispheres of the outer moons, Titania and Oberon
We report integrated orbital fits for the inner regular moons of Neptune based on the most complete astrometric data set to date, with observations from Earth-based telescopes, Voyager 2, and the Hubble Space Telescope covering 1981-2016. We summariz
As a consequence of the large (and growing) number of near-Earth objects discovered, some of them are lost before their orbit can be firmly established to ensure long-term recovery. A fraction of these present non-negligible chances of impact with th
The origin of Uranus and Neptune remains a challenge for planet formation models. A potential explanation is that the planets formed from a population of a few planetary embryos with masses of a few Earth masses which formed beyond Saturns orbit and