ﻻ يوجد ملخص باللغة العربية
The large and tidally-locked classical moons of Uranus display longitudinal and planetocentric trends in their surface compositions. Spectrally red material has been detected primarily on the leading hemispheres of the outer moons, Titania and Oberon. Furthermore, detected H2O ice bands are stronger on the leading hemispheres of the classical satellites, and the leading/trailing asymmetry in H2O ice band strengths decreases with distance from Uranus. We hypothesize that the observed distribution of red material and trends in H2O ice band strengths results from infalling dust from Uranian irregular satellites. These dust particles migrate inward on slowly decaying orbits, eventually reaching the classical satellite zone, where they collide primarily with the outer moons. The latitudinal distribution of dust swept up by these moons should be fairly even across their southern and northern hemispheres. However, red material has only been detected over the southern hemispheres of these moons (subsolar latitude 81 S). Consequently, to test whether irregular satellite dust impacts drive the observed enhancement in reddening, we have gathered new ground-based data of the now observable northern hemispheres of these moons (sub-observer latitudes, 17 to 35 N). Our results and analyses indicate that longitudinal and planetocentric trends in reddening and H2O ice band strengths are broadly consistent across both southern and northern latitudes of these moons, thereby supporting our hypothesis. Utilizing a suite of numerical best fit models, we investigate the composition of the reddening agent detected on these moons, finding that both complex organics and amorphous pyroxene match the spectral slopes of our data. We also present spectra that span 2.9 to 4.1 microns, a previously unexplored wavelength range in terms of spectroscopy for the Uranian moons.
The $mu$ and $ u$ rings of Uranus form a secondary ring-moon system with the satellites Puck, Mab,Portia, and Rosalind. These rings are tenuous and dominated by micrometric particles, which can be strongly disturbed by the solar radiation pressure. W
Satellites of giant planets thought to form in gaseous circumplanetary disks (CPDs) during the late planet-formation phase, but it was unknown so far whether smaller mass planets, such as the ice giants could form such disks, thus moons there. We com
It is widely recognized that the irregular satellites of the giant planets were captured from initially heliocentric orbits. However, the mechanism of capture and the source region from which they were captured both remain unknown. We present an opti
The formation of Uranus regular moons has been suggested to be linked to the origin of its enormous spin axial tilt (~98o). A giant impact between proto-Uranus and a 2-3 M_Earth impactor could lead to a large tilt and to the formation of a debris dis
In this paper we present visible range light curves of the irregular Uranian satellites Sycorax, Caliban, Prospero, Ferdinand and Setebos taken with Kepler Space Telescope in the course of the K2 mission. Thermal emission measurements obtained with t