ﻻ يوجد ملخص باللغة العربية
We report integrated orbital fits for the inner regular moons of Neptune based on the most complete astrometric data set to date, with observations from Earth-based telescopes, Voyager 2, and the Hubble Space Telescope covering 1981-2016. We summarize the results in terms of state vectors, mean orbital elements, and orbital uncertainties. The estimated masses of the two innermost moons, Naiad and Thalassa, are $GM_{Naiad}$= 0.0080 $pm$ 0.0043 $km^3 s^{-2}$ and $GM_{Thalassa}$=0.0236 $pm$ 0.0064 $km^3 s^{-2}$, corresponding to densities of 0.80 $pm$ 0.48 $g cm^{-3}$ and 1.23 $pm$ 0.43 $g cm^{-3}$, respectively. Our analysis shows that Naiad and Thalassa are locked in an unusual type of orbital resonance. The resonant argument 73 $dot{lambda}_{Thalassa}$-69 $dot{lambda}_{Naiad}$-4 $dot{Omega}_{Naiad}$ $approx$ 0 librates around 180 deg with an average amplitude of ~66 deg and a period of ~1.9 years for the nominal set of masses. This is the first fourth-order resonance discovered between the moons of the outer planets. More high precision astrometry is needed to better constrain the masses of Naiad and Thalassa, and consequently, the amplitude and the period of libration. We also report on a 13:11 near-resonance of Hippocamp and Proteus, which may lead to a mass estimate of Proteus provided that there are future observations of Hippocamp. Our fit yielded a value for Neptunes oblateness coefficient of $J_2$=3409.1$pm$2.9 $times 10^{-6}$.
Satellites of giant planets thought to form in gaseous circumplanetary disks (CPDs) during the late planet-formation phase, but it was unknown so far whether smaller mass planets, such as the ice giants could form such disks, thus moons there. We com
The stability of Trojan type orbits around Neptune is studied. As the first part of our investigation, we present in this paper a global view of the stability of Trojans on inclined orbits. Using the frequency analysis method based on the FFT techniq
Aims. Current and upcoming space missions may be able to detect moons of transiting extra-solar planets. In this context it is important to understand if exomoons are expected to exist and what their possible properties are. Methods. Using estimates
Previously, we have considered the equations of motion of the three-body problem in a Lagrange form (which means a consideration of relative motions of 3-bodies in regard to each other). Analyzing such a system of equations, we considered the case of
The formation of Uranus regular moons has been suggested to be linked to the origin of its enormous spin axial tilt (~98o). A giant impact between proto-Uranus and a 2-3 M_Earth impactor could lead to a large tilt and to the formation of a debris dis