ﻻ يوجد ملخص باللغة العربية
Cooperation among individuals has been key to sustaining societies. However, natural selection favors defection over cooperation. Cooperation can be favored when the mobility of individuals allows cooperators to form a cluster (or group). Mobility patterns of animals sometimes follow a Levy flight. A Levy flight is a kind of random walk but it is composed of many small movements with a few big movements. Here, we developed an agent-based model in a square lattice where agents perform Levy flights depending on the fraction of neighboring defectors. For comparison, we also tested normal-type movements implemented by a uniform distribution. We focus on how the sensitivity to defectors when performing Levy flights promotes the evolution of cooperation. Results of evolutionary simulations showed that Levy flights outperformed normal movements for cooperation in all sensitivities. In Levy flights, cooperation was most promoted when the sensitivity to defectors was moderate. Finally, as the population density became larger, higher sensitivity was more beneficial for cooperation to evolve.
Cooperative behaviour constitutes a key aspect of both human society and non-human animal systems, but explaining how cooperation evolves represents a major scientific challenge. It is now well established that social network structure plays a centra
Cooperators forgo their interest to benefit others. Thus cooperation should not be favored by natural selection. It challenges the evolutionists, since cooperation is widespread. As one of the resolutions, information spreading has been revealed to p
In the evolutionary Prisoners Dilemma (PD) game, agents play with each other and update their strategies in every generation according to some microscopic dynamical rule. In its spatial version, agents do not play with every other but, instead, inter
Data from a long time evolution experiment with Escherichia Coli and from a large study on copy number variations in subjects with european ancestry are analyzed in order to argue that mutations can be described as Levy flights in the mutation space.
Spatial structure is known to have an impact on the evolution of cooperation, and so it has been intensively studied during recent years. Previous work has shown the relevance of some features, such as the synchronicity of the updating, the clusterin